Skip to main content

Phylogenetics and its Application in Biodiversity Conservation

  • Chapter
  • First Online:
Molecular Genetics and Genomics Tools in Biodiversity Conservation
  • 757 Accesses

Abstract

In biodiversity conservation, the identification of appropriate taxonomic units for monitoring and management is pivotal, as it ensures that the efforts are effectively made towards needed species or populations. Misidentification may lead to unwanted results, including hybridization between closely related species or interbreeding between populations with unique local adaptations. Phylogenetic trees, which are graphs that illustrate the evolutionary relationship of organisms, are commonly used to delimit taxonomic groups and provide information for conservation projects. In this review, I discuss the methods of phylogenetic reconstruction, especially molecular phylogenetic methods. I also highlight several ways phylogenetic trees could be used in biodiversity conservation, with examples of their application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alacs EA, Georges A, FitzSimmons NN, Robertson J (2010) DNA detective: a review of molecular approaches to wildlife forensics. Forensic Sci Med Pathol 6:180–194

    Article  CAS  Google Scholar 

  • Allendorf FW, Luikart G (2009) Conservation and the genetics of populations. John Wiley & Sons

    Google Scholar 

  • Baker CS, Lento GM, Cipriano F, Palumbi SR (2000) Predicted decline of protected whales based on molecular genetic monitoring of Japanese and Korean markets. Proc Royal Soc London. Series B: Biol Sci 267:1191–1199

    Article  CAS  Google Scholar 

  • Baker CS, Steel D, Choi Y, Lee H, Kim KS, Choi SK, Ma Y-U, Hambleton C, Psihoyos L, Brownell RL, Funahashi N (2010) Genetic evidence of illegal trade in protected whales links Japan with the US and South Korea. Biol Lett 6:647–650

    Article  Google Scholar 

  • Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2013) GenBank. Nucleic Acids Res 41:D36–D42

    Article  CAS  Google Scholar 

  • Bickford D, Lohman DJ, Sodhi NS, Ng PKL, Meier R, Winker K, Ingram KK, Das I (2007) Cryptic species as a window on diversity and conservation. Trends Ecol Evol 22:148–155

    Article  Google Scholar 

  • CBOL Plant Working Group, Hollingsworth PM, Forrest LL, Spouge JL, Hajibabaei M, Ratnasingham S, van der Bank M, Chase MW, Cowan RS, Erickson DL, Fazekas AJ, Graham SW, James KE, Kim K-J, John Kress W, Schneider H, van AlphenStahl J, Barrett SCH, van den Berg C, Bogarin D, Burgess KS, Cameron KM, Carine M, Chacón J, Clark A, Clarkson JJ, Conrad F, Devey DS, Ford CS, Hedderson TAJ, Hollingsworth ML, Husband BC, Kelly LJ, Kesanakurti PR, Kim JS, Kim Y-D, Lahaye R, Lee H-L, Long DG, Madriñán S, Maurin O, Meusnier I, Newmaster SG, Park C-W, Percy DM, Petersen G, Richardson JE, Salazar GA, Savolainen V, Seberg O, Wilkinson MJ, Yi D-K, Little DP (2009) A DNA barcode for land plants. Proc Natl Acad Sci U S A 106:12794–12797

    Article  Google Scholar 

  • Cheng S, Melkonian M, Smith SA, Brockington S, Archibald JM, Delaux PM, Li FW, Melkonian B, Mavrodiev EV, Sun W, Fu Y (2018) 10KP: a phylodiverse genome sequencing plan. Gigascience 7(3):giy013

    Article  Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772

    Article  CAS  Google Scholar 

  • Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214

    Article  Google Scholar 

  • Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61:1–10

    Article  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Felsenstein J (2004) PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. http://www.evolution.gs.washington.edu/phylip.html

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  Google Scholar 

  • Isaac NJB, Turvey ST, Collen B, Waterman C, Baillie JEM (2007) Mammals on the EDGE: conservation priorities based on threat and phylogeny. PLoS One 2:e296

    Article  Google Scholar 

  • Ishida Y, Georgiadis NJ, Hondo T, Roca AL (2013) Triangulating the provenance of African elephants using mitochondrial DNA. Evol Appl 6:253–265

    Article  CAS  Google Scholar 

  • Jukes TH, Cantor CR (1969) Evolution of protein molecules. Mammalian Protein Metabolism 21–132

    Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  Google Scholar 

  • Kling MM, Mishler BD, Thornhill AH, Baldwin BG, Ackerly DD (2018) Facets of phylodiversity: evolutionary diversification, divergence and survival as conservation targets. Philos Trans R Soc Lond Ser B Biol Sci 374. https://doi.org/10.1098/rstb.2017.0397

  • Koepfli K-P, Paten B, the Genome 10K Community of Scientists, O’Brien SJ (2015) The Genome 10K Project: A Way Forward. https://doi.org/10.1146/annurev-animal-090414-014900

  • Liu Y-C, Sun X, Driscoll C, Miquelle DG, Xu X, Martelli P, Uphyrkina O, Smith JLD, O’Brien SJ, Luo S-J (2018) Genome-wide evolutionary analysis of natural history and adaptation in the World’s Tigers. Curr Biol 28:3840–3849.e6

    Article  CAS  Google Scholar 

  • Luo S-J, Kim J-H, Johnson WE, van der Walt J, Martenson J, Yuhki N, Miquelle DG, Uphyrkina O, Goodrich JM, Quigley HB, Tilson R, Brady G, Martelli P, Subramaniam V, McDougal C, Hean S, Huang S-Q, Pan W, Karanth UK, Sunquist M, Smith JLD, O’Brien SJ (2004) Phylogeography and genetic ancestry of tigers (Panthera tigris). PLoS Biol 2:e442

    Article  Google Scholar 

  • Mazel F, Pennell MW, Cadotte MW, Diaz S, Dalla Riva GV, Grenyer R, Leprieur F, Mooers AO, Mouillot D, Tucker CM, Pearse WD (2018) Prioritizing phylogenetic diversity captures functional diversity unreliably. Nat Commun 9:2888

    Article  Google Scholar 

  • Nei M, Kumar S. Evan Pugh Professor of Biology Masatoshi Nei(2000) Molecular evolution and Phylogenetics. Oxford University Press

    Google Scholar 

  • Owen NR, Gumbs R, Gray CL, Faith DP (2019) Global conservation of phylogenetic diversity captures more than just functional diversity. Nat Commun 10:859

    Article  Google Scholar 

  • Robinson GE, Hackett KJ, Purcell-Miramontes M, Brown SJ, Evans JD, Goldsmith MR, Lawson D, Okamuro J, Robertson HM, Schneider DJ (2011) Creating a buzz about insect genomes. Science 331:1386

    Article  Google Scholar 

  • Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313

    Article  CAS  Google Scholar 

  • Stuart BL, Inger RF, Voris HK (2006) High level of cryptic species diversity revealed by sympatric lineages of Southeast Asian forest frogs. Biol Lett 2:470–474

    Article  Google Scholar 

  • Swofford DL (2003) Phylogenetic analysis using parsimony (* and other methods). http://paup.phylosolutions.com/documentation/faq/#cite

  • Tamura K, Stecher G, Kumar S (2021) MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 38:3022

    Article  CAS  Google Scholar 

  • Vane-Wright RI, Humphries CJ, Williams PH (1991) What to protect?—systematics and the agony of choice. Biol Conserv 55:235–254

    Article  Google Scholar 

  • Winter M, Devictor V, Schweiger O (2013) Phylogenetic diversity and nature conservation: where are we? Trends Ecol Evol 28:199–204

    Article  Google Scholar 

  • Yang Z (2006) Computational molecular evolution. Oxford University Press

    Book  Google Scholar 

  • Zhang H, Miller MP, Yang F, Chan HK, Gaubert P, Ades G, Fischer GA (2015) Molecular tracing of confiscated pangolin scales for conservation and illegal trade monitoring in Southeast Asia. Global Ecol Conserv 4:414–422

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haoran Xue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xue, H. (2022). Phylogenetics and its Application in Biodiversity Conservation. In: Kumar, A., Choudhury, B., Dayanandan, S., Khan, M.L. (eds) Molecular Genetics and Genomics Tools in Biodiversity Conservation. Springer, Singapore. https://doi.org/10.1007/978-981-16-6005-4_1

Download citation

Publish with us

Policies and ethics