Skip to main content
Log in

The Effect of Azone on Ocular Levobunolol Absorption: Calculating the Area Under the Curve and Its Standard Error Using Tissue Sampling Compartments

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Methods of calculating the area under the concentration–time curve and the associated standard error are proposed for studies in which each animal contributes one independent data point to a pool of data. This approach can be used for data analysis in bioequivalence studies employing tissue sampling compartments. Application of this method indicated that an azone-containing ophthalmic formulation of levobunolol did not produce better ocular bioavailability than a formulation containing no penetration enhancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. American Pharmaceutical Association—Academy of Pharmaceutical Sciences. Guidelines for Biopharmaceutical Studies in Man, Am. Pharm. Assoc. Acad. Pharm. Sci., Washington, D.C., 1972.

    Google Scholar 

  2. D. D-S. Tang-Liu, S. S. Liu, and R. J. Weinkam. Ocular and systemic bioavailability of ophthalmic flurbiprofen. J. Pharmacokin. Biopharm. 12:611–626 (1984).

    Google Scholar 

  3. J. M. Conrad and J. R. Robinson. Aqueous chamber drug distribution volume measurement in rabbits. J. Pharm. Sci. 66:219–224 (1977).

    Google Scholar 

  4. K. Himmelstein, I. Guvenir, and T. F. Patton. Preliminary pharmacokinetic model of pilocarpine uptake and distribution in the eye. J. Pharm. Sci. 67:603–606 (1978).

    Google Scholar 

  5. V. F. Smolen and R. D. Shoenwald. Drug absorption analysis from pharmacological data. I. Method and confirmation exemplified for the mydriatic drug tropicamide. J. Pharm. Sci. 60:96–103 (1971).

    Google Scholar 

  6. M. Eller and R. D. Schoenwald. Determination of ethoxzolamide in the iris/ciliary body of the rabbit eye by high performance liquid chromatography. Comparison of tissue levels following intravenous and topical administrations. J. Pharm. Sci. 73:1261–1264 (1984).

    Google Scholar 

  7. L. B. Sheiner, B. Rosenberg, and V. V. Marathe. Estimation of population characteristics of pharmacokinetic parameters from routine clinical data. J. Pharmacokin. Biopharm. 5:445–479 (1977).

    Google Scholar 

  8. D. D.-S. Tang-Liu, S. S. Liu, J. Neff, and R. Sandri. Levobunolol disposition after ophthalmic doses to rabbits. J. Pharm. Sci. 76:780–783.

  9. D. D.-S. Tang-Liu, S. S. Liu, J. Richman, and R. J. Weinkam. HPLC quantitation of levobunolol and its metabolite, dihydrolevobunolol, in biological fluids. J. Liq. Chromatogr. 9:2237–2252.

  10. F. E. Satterthwaite. Synthesis of variance. Psychometrika 6:309–316 (1941).

    Google Scholar 

  11. D. J. Best and J. C. W. Rayner. Welch's approximate solution for the Behrens-Fisher problem. Technometrics 29:205–210 (1987).

    Google Scholar 

  12. G. A. Milliken and D. E. Johnson. Analysis of Messy Data, Vol. 1. Designed Experments, Lifetime Learning, Belmont, Calif., 1984, p. 19.

    Google Scholar 

  13. R. D. Schoenwald and H.-S. Huang. Corneal penetration behavior of β-blocking agents. I. Physicochemical factors. J. Pharm. Sci. 72:1266–1271 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang-Liu, D.DS., Burke, P.J. The Effect of Azone on Ocular Levobunolol Absorption: Calculating the Area Under the Curve and Its Standard Error Using Tissue Sampling Compartments. Pharm Res 5, 238–241 (1988). https://doi.org/10.1023/A:1015997814379

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015997814379

Navigation