Skip to main content
Log in

Activity Coefficients of Individual Ions from Titration Data

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

It is shown that the activity coefficients of the anions resulting from the dissociation of a weak polyprotic acid can be obtained from titration data. Activity coefficients are determined in terms of the activity coefficient of the undissociated acid. The extracted activity coefficients are also dependent on the pH scale adopted in the titration process and are considered as operational coefficients. The computational procedure uses an exact equation representing the titration curve and a nonlinear least-squares fitting procedure. As an illustration, the activity coefficients of the anions of succinic acid are determined. The method also allows study of the variation of the activity coefficients with the ionic strength in a straightforward manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Robinson and R. H. Stokes, Electrolyte Solutions, 2nd edn. (Wiley, New York, 1965).

    Google Scholar 

  2. L. M. Raff, Principles of Physical Chemistry (Prentice Hall, New Jersey, 2001).

    Google Scholar 

  3. K. S. Pitzer, J. Phys. Chem. 77, 268(1973).

    Google Scholar 

  4. K. S. Pitzer and G. Mayorga, J. Phys. Chem. 77, 2300(1973).

    Google Scholar 

  5. K. S. Pitzer and G. Mayorga, J. Solution Chem. 3, 539(1974).

    Google Scholar 

  6. K. S. Pitzer and J. J. Kim, J. Amer. Chem. Soc. 96, 5701(1974).

    Google Scholar 

  7. I. Jano, C. R. Acad. Sci. (Paris) 261, 103(1965).

    Google Scholar 

  8. H. R. Rabie, G. Wilczek-Vera, and J. H. Vera, J. Solution Chem. 28, 885(1999).

    Google Scholar 

  9. R. G. Bates, B. R. Staples, and R. A. Robinson, Anal. Chem. 42, 867(1970).

    Google Scholar 

  10. F. Malatesta, J. Solution Chem. 29, 771(2000).

    Google Scholar 

  11. K. S. Pitzer and L. F. Silvester, J. Solution Chem. 5, 269(1976).

    Google Scholar 

  12. I. Jano and J. E. Hardcastle, J. Chim. Phys. 95, 1583(1998).

    Google Scholar 

  13. I. Jano and J. E. Hardcastle, Anal. Chim. Acta 390, 261(1999).

    Google Scholar 

  14. I. Jano and J. E. Hardcastle, Anal. Chim. Acta 390, 267(1999).

    Google Scholar 

  15. I. Jano and J. E. Hardcastle, Anal. Chim. Acta 424, 139(2000).

    Google Scholar 

  16. I. Jano, J. E. Hardcastle, L. A. Jano, K. R. Bates, and H. E. McCreary, Anal. Chim. Acta 428, 309(2001).

    Google Scholar 

  17. W. E. Deming, Statistical Adjustment of Data (Wiley, London, 1943).

    Google Scholar 

  18. R. de Levie, J. Chem. Educ. 76, 987(1999).

    Google Scholar 

  19. D. C. Harris, Quantitative Chemical Analysis, 5th edn. (Freeman and Company, New York, 1999).

    Google Scholar 

  20. Handbook of Chemistry and Physics, 63rd edn. (CRC Press, Boca Raton, FL, 1982–83.)

  21. M. F. Kropman and H. J. Bakker, Science 291, 2118(2001).

    Google Scholar 

  22. M. J. H. M. Lito, F. G. F. C. Camoes, M. A. Ferra, and A. K. Covington, Anal. Chim. Acta 239, 129(1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jano, I., Jarvis, T. Activity Coefficients of Individual Ions from Titration Data. Journal of Solution Chemistry 31, 317–339 (2002). https://doi.org/10.1023/A:1015857321620

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015857321620

Navigation