Skip to main content
Log in

Visual Event-Related Potentials During Movement Imagery and the Dipole Analysis

  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

Visual event-related potentials during an oddball paradigm with movement imagery tasks were recorded in 10 right-handed subjects from 32 scalp electrodes. Rare targets and non-targets elicited early (P3e) and late (P3l) P300 components. In the P3e there was no difference between the rare target and non-target. In the right-imagery task the rare target P3l amplitude was larger than the rare non-target one, whereas the rare non-target P3l amplitude was larger than the rare target one in the left-imagery task. Some of the 4 equivalent current dipole (ECD) sources were located at the subcortical regions, the cerebellum and the cingulate cortex, common to the P3e and the P3l. Moreover, another P3e dipole was localized to the parietal regions, while that of the P3l dipoles to the contralateral premotor cortex. This difference between the P3e and P3l dipoles might reflect two different neural networks related with the transformation of coordinates from visual to motor space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, G., Buxton, R.B., Wong, E.C. and Courchesne, E. Attentional activation of the cerebellum independent of motor involvement. Science, 1997, 275: 1940–1943.

    Google Scholar 

  • Beisteiner, R., Hollinger, P., Lindinger, G., Lang, W. and Berthoz, A. Mental representations of movements. Bra in potentials associated with imagination of hand movements. Electroenceph. Clin. Neurophysiol., 1995, 96: 183–193.

    Google Scholar 

  • Bonda, E., Petrides, M., Frey, S. and Evans, A. Neural correlates of mental transformations of the body-in-space. Proc. Natl. Acad. Sci. USA, 1995, 92: 11180–11184.

    Google Scholar 

  • Bracewell, R.M., Mazzoni, P., Barash, S. and Andersen, R.A. Motor intention activity in the macaque's lateral intraparietal area. J. Neurophysiol., 1996, 76(5): 1457–1464.

    Google Scholar 

  • Carter, C.S., Braver, T.S., Barch, D.M., Botvinick, M.M., Noll, D. and Cohen, J.D. Anterior cingulate cortex, error detection, and the online monitoring of performance. Science, 1998, 280: 747–749.

    Google Scholar 

  • Corbetta, M., Miezin, F.M., Shulman, G.L. and Petersen, S.E. A PET study of visuospatial attention. J. Neurosci., 1993, 13(3): 1202–1226.

    Google Scholar 

  • Corbetta, M. Frontoparietal cortical networks for detecting attention and the eye to visual locations: Identical, independent, or overlapping neural systems? Proc. Natl. Acad. Sci. USA, 1998, 95: 831–838.

    Google Scholar 

  • Corbetta, M., Akbudak, E., Conturo, T.E., Snyder, A.Z., Ollinger, J.M., Drury, H.A., Linenweber, M.R., Petersen, S.E., Raichle, M.E., Van Essen, D.C. and Shulman, G.L. A common network of functional areas for attention and eye movements. Neuron, 1998, 21: 761–773.

    Google Scholar 

  • Decety, J., Philippon, B. and Ingvar, D.H. rCBF landscapes during motor performance and motor ideation of a graphic gesture. Eur. Arch. Psychiatr. Neurol. Sci., 1988, 238: 33–38.

    Google Scholar 

  • Decety, J., Sjoholm, H., Ryding, E., Stenberg, G. and Ingvar, D.H. The cerebellum participates in mental activity: tomographic measurements of regional cerebral blood flow. Brain Res., 1990, 535: 313–317.

    Google Scholar 

  • Decety, J., Kawashima, R., Gulyas, B. and Roland, P.E. Preparation for reaching: a PET study of the participating structures in the human brain. NeurReport, 1992, 3: 761–764.

    Google Scholar 

  • Decety, J., Perani, D., Jeannerod, M., Bettinardi, V., Tadary, B., Woods, R., Mazziotta, J.C. and Fazio, F. Mapping motor representations with positron emission tomography. Nature, 1994, 371: 600–602.

    Google Scholar 

  • Deiber, M.-P., Ibanez, V., Sadato, N. and Hallett, M. Cerebral structures participating in motor preparation in humans: a positron emission tomography study. J. Neurophysiol., 1996, 75(1): 233–247.

    Google Scholar 

  • Farwell, L.A. and Donchin, E. Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroenceph. Clin. Neurophysiol., 1988, 70: 513–523.

    Google Scholar 

  • Fox, P.T., Pardo, J.V., Petersen, S.E. and Raichle, M.E. Supplementary motor and premotor responses to actual and imagined hand movements with positron emission tomography. Soc. Neurosci. Abstr., 1987, 13: 1433.

    Google Scholar 

  • Frith, C.D., Friston, K., Liddle, P.F. and Frackowiak, R.S.J. Willed action and the prefrontal cortex in man: a study with PET. Proc. R. Soc. Lond. B, 1991, 244: 241–246.

    Google Scholar 

  • Fujimaki, N., Takeuchi, F., Kobayashi, T., Kuriki, S. and Hasuo, S. Event-related potentials in silent speech. Brain Topography, 1994, 6(4): 259–267.

    Google Scholar 

  • Godschalk, M., Lemon, R.N., Kuypers, H.G.J.M. and Ronday, H.K. Cortical afferents and efferents of monkey postarcuate area: an anatomical and electrophysiological study. Exp. Brain Res., 1984, 56: 410–424.

    Google Scholar 

  • Godschalk, M. and Lemon, R.N. Preparation of visually cuedarm movementsin monkey. Brain Behav. Evol., 1989, 33: 122–126.

    Google Scholar 

  • Grafton, S.T., Mazziotta, J.C., Woods, R.P. and Phelps, M.E. Human functional anatomy of visually guided finger movement. Brain, 1992, 115: 565–587.

    Google Scholar 

  • Greenhouse, S.W. and Geisser, S. On methods in the analysis of profile data. Psychometrika, 1959, 24: 95–112.

    Google Scholar 

  • Halgren, E. Physiological integration of the declarative memory system. In: J. Delacour (Ed.), The Memory of the Brain, World Scientific, New York, 1994: 69–155.

    Google Scholar 

  • Hiraiwa, A., Shimohara, K. and Tokunaga, Y. EEG topography recognition by neural network. IEEE Eng. in Med. and Biol., 1990, 9(3): 39–42.

    Google Scholar 

  • Ito, M. (Ed.), The Cerebellum and Neural Control, New York, Raven, 1984.

    Google Scholar 

  • Kamijo, K., Kenmochi, A. and Yamazaki, T. Dipole localization of motion-imaging-related potentials. Proc. BPES'97, 1997, 233–236 (in Japanese).

  • Kamijo, K., Kiyuna, T., Takaki, Y., Kenmochi, A., Tanigawa, T. and Yamazaki, T. Integrated approach of an artificial neural network and numerical analysis to multiple equivalent current dipole source localization. Frontier Med. Biol. Engng., 2001, 10(4): 285–301.

    Google Scholar 

  • Kawashima, R., Okuda, J., Umetsu, A., Sugiura, M., Inoue, K., Suzuki, K., Tabuchi, M., Tsukiura, T., Narayan, S.L., Nagasaka, T., Yanagawa, I., Fujii, T., Takahashi, S., Fukuda, H. and Yamadori, A. Human cerebellum plays an important role in memory-timed finger movement: an fMRI study. J. Neurophysiol., 2000, 83: 1079–1087.

    Google Scholar 

  • Kim, S.-G., Ugurbil, K. and Strick, P.L. Activation of a cerebellar output nucleus during cognitive processing. Science, 1994, 265: 949–951.

    Google Scholar 

  • Kosslyn, S.M., Digirolamo, G.J., Thompson, W.L. and Alpert, N.M. Mental rotation of objects versus hands: Neural mechanisms revealed by positron emission tomography. Psychophysiology, 1998, 35: 151–161.

    Google Scholar 

  • Kurata, K. Corticocortical inputs to the dorsal and ventral aspects of the premotor cortex of macaque monkeys. Neurosci. Res., 1991, 12: 263–280.

    Google Scholar 

  • Kurata, K. Site of origin of projections from the thalamus to dorsal versus ventral aspects of the premotor cortex of monkeys. Neurosci. Res., 1994, 21: 71–76.

    Google Scholar 

  • Kurata, K. and Hoshi, E. Reacquisition deficits in prism adaptation after muscimol microinjection into the ventral premotor cortex of monkeys. J. Neurophysiol., 1999, 81: 1927–1938.

    Google Scholar 

  • Matelli, M., Camarda, R., Glickstein, M. and Rizzolatti, G. Afferent and efferent projections of the inferior area 6 in the macaque monkey. J. comp. Neurol., 1986, 251: 281–298.

    Google Scholar 

  • Mitz, A.R., Godschalk, M. and Wise, S.P. Learning-dependent neuronal activity in the premotor cortex: activity during the acquisition of conditional motor association. J. Neurosci., 1991, 11(6): 1855–1872.

    Google Scholar 

  • Murata, A., Gallesse, V., Kaseda, M. and Sakata, H. Parietal neurons related to memory-guided hand manipulation. J. Neurophysiol., 1996, 75(5): 2180–2186.

    Google Scholar 

  • Mushiake, H., Inase, M. and Tanji, J. Neuronal activity in the primate premotor, supplementary, and precentral motor cortex during visually guided and internally determined sequential movements. J. Neurophysiol., 1991, 66(3): 705–718.

    Google Scholar 

  • Pardo, J.V., Pardo, P.J., Janer, K.W. and Raichle, M.E. The anterior cingulate cortex mediates processing selection in the Stroop attentional paradigm. Proc. Natl. Acad. Sci. USA, 1990, 87: 256–259.

    Google Scholar 

  • Pardo, J.V., Fox, P.T. and Raichle, M.E. Localization of a human system for sustained attention by positron emission tomography. Nature, 1991, 349: 61–64.

    Google Scholar 

  • Oldfield, R.C. The assessment and analysis of handedness: the Edinburgh Inventory. Neuropsychologia, 1971, 9: 97–113.

    Google Scholar 

  • Parsons, L.M., Fox, P.T., Downs, J.H, Glass, T., Hirsch, T.B., Martin, C.C., Jerabek, P.A. and Lancaster, J.L. Use of implicit motor imagery for visual shape discrimination as revealed by PET. Nature, 1995, 375: 54–58.

    Google Scholar 

  • Paus, T., Petrides, M., Evans, A.C. and Meyer, E. Role of the human anterior cingulate cortex in the control of oculomotor, manual, and speech responses: a positron emission tomography study. J. Neurophysiol., 1993, 70: 453–469.

    Google Scholar 

  • Petrides, M. and Pandya, D.N. Projections to the frontal lobes from the posterior parietal region in the rhesus monkey. J. comp. Neurol., 1984, 228: 105–116.

    Google Scholar 

  • Pfurtscheller, G., Flotzinger, D., Mohl, W. and Peltoranta, M. Prediction of the side of hand movements from single-trial multi-channel EEG data using neural networks. Electroenceph. Clin. Neurophysiol., 1992, 82: 313–315.

    Google Scholar 

  • Rao, S.M., Binder, J.R., Bandettini, P.A., Hammeke, T.A., Yetkin, F.Z., Jesmanowicz, A., Lisk, L.M., Morris, G.L., Mueller, W.M., Estkowski, L.D., Wong, E.C., Haughton, V.M. and Hyde, J.S. Functional magnetic resonance imaging of complex human movements. Neurology, 1993, 43: 2311–2318.

    Google Scholar 

  • Roland, P.E., Larsen, B., Lassen, N.A. and Skinhoj, E. Supplementary motor area and other cortical areas in organization of voluntary movements in man. J. Neurophysiol., 1980, 43(1): 118–136.

    Google Scholar 

  • Ryding, E., Decety, J., Sjoholm, H., Stenberg, G. and Ingvar, D.H. Motor imagery activates the cerebellum regionally.A SPECT rCBF study with 99mTc-HMPAO. Cogn. Brain Res., 1993, 1: 94–99.

    Google Scholar 

  • Sakata, H., Taira, M., Murata, A. and Mine, S. Neural mechanisms of visual guidance of hand action in the parietal cortex of the monkey. Cereb. Cortex, 1995, 5: 429–438.

    Google Scholar 

  • Seitz, R.J., Canavan, A.G.M., Yaguez, L., Herzog, H., Tellmann, L., Knorr, U., Huang, Y. and Homberg, V. Successive roles of the cerebellum and premotor cortices in trajectorial learning. NeuroReport, 1994, 5: 2541–2544.

    Google Scholar 

  • Sergent, J., Zuck, E., Terriah, S. and MacDonald, B. Distributed neural network underlying musical sight-reading and keyboard performance. Science, 1992, 257: 106–109.

    Google Scholar 

  • Snyder, L.H., Batista, A.P. and Andersen, R.A. Coding of intention in the posterior parietal cortex. Nature, 1997, 386: 167–170.

    Google Scholar 

  • Soufflet, L., Toussaint, M., Luthringer, R., Gresser, J., Minot, R. and Macher, J.P. A statistical evaluation of the ma in interpolation methods applied to 3-dimensionalEEGmapping. Electroenceph. Clin. Neurophysiol., 1991, 79: 393–402.

    Google Scholar 

  • Stephan, K.M., Fink, G.R., Passingham, R.E., Silbersweig, D., Ceballos-Baumann, A.O., Frith, C.D. and Frackowiak, R.S.J. Functional anatomy of the mental representation of upper extremity movements in healthy subjects. J.Neurophysiol., 1995, 73(1): 373–386.

    Google Scholar 

  • Yamazaki, T., Kamijo, K., Kenmochi, A., Fukuzumi, S., Kiyuna, T., Takaki, Y. and Kuroiwa, Y. Multiple equivalent current dipole source localization of visual event-related potentials during oddball paradigm with motor response. Brain Topography, 2000, 12(3): 159–175.

    Google Scholar 

  • Yamazaki, T., Kamijo, K., Kiyuna, T., Takaki, Y. and Kuroiwa, Y. Multiple dipole analysis of visual event-related potentials during oddball paradigm with silent counting. Brain Topography, 2001, 13(3): 161–168.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamijo, Ki., Yamazaki, T., Kiyuna, T. et al. Visual Event-Related Potentials During Movement Imagery and the Dipole Analysis. Brain Topogr 14, 279–292 (2002). https://doi.org/10.1023/A:1015733127075

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015733127075

Navigation