Skip to main content
Log in

On the Switch Between Selective Oxidation and Selective Hydrogenation of a Terminal Alkene on Well-Defined Titania Surfaces

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Stoichiometric, hydroxylated titania surfaces are effective for the partial oxidation of styrene to acetophenone. The initial product of reaction is styrene epoxide which undergoes isomerisation to acetophenone, the thermodynamically favoured product. The oxygen in the product derives exclusively from the water used for hydroxylation, and not from the titania lattice. Surface hydroxyl groups are the active sites for this 100% selective, partial oxidation. Controlled reduction of titania to TiOx leads to the appearance of bandgap photoemission associated with the formation of Tin+ (n = 0--3) at the surface. This results in complete suppression of all oxidation activity and a switch to selective hydrogenation: the reaction product is now ethylbenzene, again produced with 100% selectivity. The important implications of these findings for an understanding of the properties of metal/titania catalysts used for alkene conversion are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Hayashi, K. Tanaka and M. Haruta, J. Catal. 178 (1998) 566.

    Google Scholar 

  2. E.E. Stangland, K.B. Stavens, R.P. Andres and W.N. Delgass, J. Catal. 191 (2000) 332.

    Google Scholar 

  3. R. Hutter, T. Mallat and A. Baiker, J. Chem. Soc., Chem. Commun. (1995) 2487.

  4. S. Thorimbert, S. Klein and W.F. Maier, Tetrahedron 51 (1995) 3787.

    Google Scholar 

  5. S. Krijnen, P. Sanchez, B.T.F. Jakobs and J.H.C. Hooff, Micropor. Mesopor. Mat. 31 (1999) 163.

    Google Scholar 

  6. R. Meiers and W.F. Holderich, Catal. Lett. 59 (1999) 161.

    Google Scholar 

  7. T. Maschmeyer, F. Rey, G. Sankar and J.M. Thomas, Nature 378 (1995) 159.

    Google Scholar 

  8. R.D. Oldroyd, J.M. Thomas and G. Sankar, Chem. Commun. (1997) 2025.

  9. Q.H. Yang, S.L. Wang, J.Q. Lu, G. Xiong, Z.C. Feng, Q. Xin and C. Li, Appl. Catal. A-Gen. 194 (2000) 507.

    Google Scholar 

  10. H.S. Lee and H.Y. Lee, Bull. Korean Chem. Soc. 21 (2000) 451.

    Google Scholar 

  11. Y.I. Yermakov, Y.A. Ryndin, O.S. Alekseev, D.I. Kochubey, V.A. Shmachkov and N.I. Gergert, J. Mol. Catal. 49 (1989) 121.

    Google Scholar 

  12. E.C.H. Sykes, M.S. Tikhov and R.M. Lambert, submitted to J. Phys. Chem. B (2001).

  13. M.A. Henderson, S. Otero-Tapia and M.E. Castro, Faraday Discuss. 114 (1999) 313.

    Google Scholar 

  14. I.M. Brookes, C.A. Muryn and G. Thornton, submitted to Phys. Rev. Lett. (2001).

  15. NIST, http://webbook.nist.gov/.

  16. S. Kulasegaram and R.J. Kulawiec, J. Org. Chem. 62 (1997) 6547.

    Google Scholar 

  17. G.K.S. Prakash, T. Mathew, S. Krishnaraj, E.R. Marinez and G.A. Olah, Appl. Catal. A-Gen. 181 (1999) 283.

    Google Scholar 

  18. J.W. Dallinga, N.M.M. Nibbering and G.J. Louter, Org. Mass Spectrom. 16 (1981) 183.

    Google Scholar 

  19. M. Valden, X. Lai and D.W. Goodman, Science 281 (1998) 1647.

    Google Scholar 

  20. S. Hawker, C. Mukoid, J.P.S. Badyal and R.M. Lambert, Surf. Sci. 219 (1989) L615.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sykes, E.C.H., Tikhov, M.S. & Lambert, R.M. On the Switch Between Selective Oxidation and Selective Hydrogenation of a Terminal Alkene on Well-Defined Titania Surfaces. Catalysis Letters 78, 7–11 (2002). https://doi.org/10.1023/A:1014968904198

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014968904198

Navigation