Skip to main content

Advertisement

Log in

TiO2 as an effective photocatalyst mechanisms, applications, and dopants: a review

  • Topical Review - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Over the years, several forms of energy resources have been used for a variety of purposes; however, the over use of energy supplies has resulted in a variety of problems. Renewable energy sources are an excellent approach for addressing these challenges. In recent years, it has become possible to modify photoelectrochemical cells with titanium dioxide, cadmium sulfide, and graphitic nitride to create clean hydrogen. It has been discovered that the doping method enhances the photocatalytic activity of the catalyst. Metal-oxide nanoparticles are common dopants; one example of this is iron-doped TiO2, which exhibits remarkable quantum efficiency due to the presence of iron. Nanomaterials with excellent crystallinity, three-dimensional structure, and tiny size are needed for obtaining high photocatalytic efficiency. The focus of the current research is on clean fuel production (hydrogen synthesis) using a doped titanium dioxide photocatalyst. In addition to clean fuel generation, attention is being paid to the development of titanium dioxide doping technologies and the doping of titanium dioxide. Experimental manufacturing approaches have been investigated to achieve this goal. Both theoretical (computational) and experimental methodologies have been discussed that aid in reducing band gap of pure Anatase TiO2 and may help in achieving better photocatalytic water splitting (PWS) for hydrogen production.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reproduced with permission from Journal of Electronic Materials [22]

Fig. 3

Reproduced with permission from Elsevier [53]

Fig. 4

Reproduced with permission from Elsevier [53]

Fig. 5

Reproduced with permission from Royal Society of Chemistry [22]

Fig. 6
Fig. 7

Reproduced with permission from American Chemical Society [77]

Fig. 8

Reproduced with permission from Elsevier Science and Technology Journal [78]

Fig. 9
Fig. 10

Reproduced with permission from Elsevier [28]

Fig. 11

Reproduced with permission from Elsevier [28]

Fig. 12
Fig. 13

Reproduced with permission from Elsevier [90]

Fig. 14

Reproduced with permission from Elsevier [92]

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors' comment: All data generated or analyzed during this study are included in this article.]

References

  1. H. Ahmad, S.K. Kamarudin, L.J. Minggu, M. Kassim, Renew. Sustain. Energy Rev. 43, 599 (2015)

    Google Scholar 

  2. J. Zhu, M. Zäch, Curr. Opin. Colloid Interface Sci. 14, 260 (2009)

    Google Scholar 

  3. A. Fujishima, K. Honda, Nature 238, 37 (1972)

    ADS  Google Scholar 

  4. J.X. Hay, T.Y. Wu, J.C. Juan, JMd. Jahim, Biofuels Bioprod. Biorefin. 7, 334 (2013)

    Google Scholar 

  5. X. An, C. Hu, H. Liu, J. Qu, Langmuir 34, 1883 (2018)

    Google Scholar 

  6. F. Vaquero, R.M. Navarro, J.L.G. Fierro, Appl. Catal. B 203, 753 (2017)

    Google Scholar 

  7. Q. Xu, B. Cheng, J. Yu, G. Liu, Carbon 118, 241 (2017)

    Google Scholar 

  8. J. Moma, J. Baloyi, Photocatal. Appl. Attrib. (2019).

  9. V. Etacheri, C. Di Valentin, J. Schneider, D. Bahnemann, S.C. Pillai, J. Photochem. Photobiol. C 25, 1 (2015)

    Google Scholar 

  10. M.A. Nadeem, M.A. Khan, A.A. Ziani, H. Idriss, Catalysts 11, 60 (2021)

    Google Scholar 

  11. R. Abe, J. Photochem. Photobiol. C Photochem. Rev. 11, 179 (2010)

    Google Scholar 

  12. A.T. Garcia-Esparza, T. Shinagawa, S. Ould-Chikh, M. Qureshi, X. Peng, N. Wei, D.H. Anjum, A. Clo, T.-C. Weng, D. Nordlund, D. Sokaras, J. Kubota, K. Domen, K. Takanabe, Angew. Chem. Int. Ed. 56, 5780 (2017)

    Google Scholar 

  13. W. Mulewa, M. Tahir, N.A. Amin, Chem. Eng. J. 326, 956 (2017)

    Google Scholar 

  14. S.N. Jaafar, L.J. Minggu, K. Arifin, M.B. Kassim, W.R. Wan, Renew. Sustain. Energy Rev. 78, 698 (2017)

    Google Scholar 

  15. B. Liu, S. Su, W. Zhou, Y. Wang, D. Wei, L. Yao, Y. Ni, M. Cao, C. Hu, CrystEngComm 19, 675 (2017)

    Google Scholar 

  16. S. Sun, P. Gao, Y. Yang, P. Yang, Y. Chen, Y. Wang, ACS Appl. Mater. Interfaces. 8, 18126 (2016)

    Google Scholar 

  17. Y. Wu, G. Lu, S. Li, J. Phys. Chem. C 113, 9950 (2009)

    Google Scholar 

  18. H. Bahruji, M. Bowker, P.R. Davies, F. Pedrono, Appl. Catal. B 107, 205 (2011)

    Google Scholar 

  19. M.-C. Wu, J. Hiltunen, A. Sápi, A. Avila, W. Larsson, H.-C. Liao, M. Huuhtanen, G. Tóth, A. Shchukarev, N. Laufer, Á. Kukovecz, Z. Kónya, J.-P. Mikkola, R. Keiski, W.-F. Su, Y.-F. Chen, H. Jantunen, P.M. Ajayan, R. Vajtai, K. Kordás, ACS Nano 5, 5025 (2011)

    Google Scholar 

  20. S.K. Parayil, H.S. Kibombo, C.-M. Wu, R. Peng, J. Baltrusaitis, R.T. Koodali, Int. J. Hydrogen Energy 37, 8257 (2012)

    Google Scholar 

  21. S. Martha, P.C. Sahoo, K.M. Parida, RSC Adv. 5, 61535 (2015)

    ADS  Google Scholar 

  22. M.R. Gholipour, C.-T. Dinh, F. Béland, T.-O. Do, Nanoscale 7, 8187 (2015)

    ADS  Google Scholar 

  23. D. Gogoi, A. Namdeo, A.K. Golder, N.R. Peela, Int. J. Hydrogen Energy 45, 2729 (2020)

    Google Scholar 

  24. J.F. Guayaquil-Sosa, B. Serrano-Rosales, P.J. Valadés-Pelayo, H. de Lasa, Appl. Catal. B 211, 337 (2017)

    Google Scholar 

  25. W. Ouyang, M.J. Muñoz-Batista, A. Kubacka, R. Luque, M. Fernández-García, Appl. Catal. B 238, 434 (2018)

    Google Scholar 

  26. T.N. Ravishankar, M. de Vaz, T. Ramakrishnappa, S.R. Teixeira, J. Dupont, RSC Adv. 7, 43233 (2017)

    ADS  Google Scholar 

  27. A.T. Montoya, E.G. Gillan, ACS Omega 3, 2947 (2018)

    Google Scholar 

  28. R. Dholam, N. Patel, M. Adami, A. Miotello, Int. J. Hydrogen Energy 34, 5337 (2009)

    Google Scholar 

  29. G. Sadanandam, K. Lalitha, V.D. Kumari, M.V. Shankar, M. Subrahmanyam, Int. J. Hydrogen Energy 38, 9655 (2013)

    Google Scholar 

  30. Z. Xing, Z. Li, X. Wu, G. Wang, W. Zhou, Int. J. Hydrogen Energy 41, 1535 (2016)

    Google Scholar 

  31. R.-J. Wu, Y.-C. Hsieh, Proceedings of the 14th Asia Pacific Confederation of Chemical Engineering Congress (2012)

  32. A.K. Tripathi, M.C. Mathpal, P. Kumar, M.K. Singh, M.A.G. Soler, A. Agarwal, J. Alloy. Compd. 622, 37 (2015)

    Google Scholar 

  33. W. Zhao, X. Wang, H. Sang, K. Wang, Chin. J. Chem. 31, 415 (2013)

    Google Scholar 

  34. C.-Y. Su, L.-C. Wang, W.-S. Liu, C.-C. Wang, T.-P. Perng, ACS Appl. Mater. Interfaces. 10, 33287 (2018)

    Google Scholar 

  35. Y. Yang, K. Ye, D. Cao, P. Gao, M. Qiu, L. Liu, P. Yang, ACS Appl. Mater. Interfaces. 10, 19633 (2018)

    Google Scholar 

  36. X. Xu, W. Song, Mater. Technol. 32, 52 (2016)

    ADS  Google Scholar 

  37. G. Jia, Y. Wang, X. Cui, W. Zheng, ACS Sustain. Chem. Eng. 6, 13480 (2018)

    Google Scholar 

  38. A. Furube, T. Asahi, H. Masuhara, H. Yamashita, M. Anpo, J. Phys. Chem. B 103, 3120 (1999)

    Google Scholar 

  39. N. Liu, S.P. Albu, K. Lee, S. So, P. Schmuki, Electrochim. Acta 82, 98 (2012)

    Google Scholar 

  40. P. Kumar, P. Devi, R. Jain, S.M. Shivaprasad, R.K. Sinha, G. Zhou, R. Nötzel, Commun. Chem. 2, 1 (2019)

    Google Scholar 

  41. A. Fitch, N.C. Strandwitz, B.S. Brunschwig, N.S. Lewis, J. Phys. Chem. C 117, 2008 (2013)

    Google Scholar 

  42. S. Cho, J.-W. Jang, K.-H. Lee, J.S. Lee, APL Mater. 2, 010703 (2014)

    ADS  Google Scholar 

  43. Q. Nie, L. Yang, C. Cao, Y. Zeng, G. Wang, C. Wang, S. Lin, Chem. Eng. J. 325, 151 (2017)

    Google Scholar 

  44. H. Huang, X. Hou, J. Xiao, L. Zhao, Q. Huang, H. Chen, Y. Li, Catal. Today 330, 189 (2019)

    Google Scholar 

  45. S. Pokrant, S. Dilger, S. Landsmann, M. Trottmann, Mater. Today Energy 5, 158 (2017)

    Google Scholar 

  46. M.M. Momeni, Y. Ghayeb, J. Appl. Electrochem. 45, 557 (2015)

    Google Scholar 

  47. A.A. Ismail, D.W. Bahnemann, Sol. Energy Mater. Sol. Cells 128, 85 (2014)

    Google Scholar 

  48. A.K. Vishwakarma, P. Tripathi, A. Srivastava, A.S.K. Sinha, O.N. Srivastava, Int. J. Hydrogen Energy 42, 22677 (2017)

    Google Scholar 

  49. D.A. Panayotov, A.I. Frenkel, J.R. Morris, ACS Energy Lett. 2, 1223 (2017)

    Google Scholar 

  50. W. Hou, S.B. Cronin, Adv. Func. Mater. 23, 1612 (2012)

    Google Scholar 

  51. G.V. Hartland, L.V. Besteiro, P. Johns, A.O. Govorov, ACS Energy Lett. 2, 1641 (2017)

    Google Scholar 

  52. K.K. Patra, C.S. Gopinath, ChemCatChem 8, 3294 (2016)

    Google Scholar 

  53. J. Fang, S.-W. Cao, Z. Wang, M.M. Shahjamali, S.C. Loo, J. Barber, C. Xue, Int. J. Hydrogen Energy 37, 17853 (2012)

    Google Scholar 

  54. B. Gupta, A.A. Melvin, T. Matthews, S. Dash, A.K. Tyagi, Renew. Sustain. Energy Rev. 58, 1366 (2016)

    Google Scholar 

  55. S. Linic, P. Christopher, D.B. Ingram, Nat. Mater. 10, 911 (2011)

    ADS  Google Scholar 

  56. E.W. Awin, A. Lale, K.C.H. Kumar, U.B. Demirci, S. Bernard, R. Kumar, Mater. Des. 157, 87 (2018)

    Google Scholar 

  57. L. Gui, S. Bagheri, N. Strohfeldt, M. Hentschel, C.M. Zgrabik, B. Metzger, H. Linnenbank, E.L. Hu, H. Giessen, Nano Lett. 16, 5708 (2016)

    ADS  Google Scholar 

  58. J.A. Briggs, G.V. Naik, T.A. Petach, B.K. Baum, D. Goldhaber-Gordon, J.A. Dionne, Appl. Phys. Lett. 108, 051110 (2016)

    ADS  Google Scholar 

  59. K.H. Leong, B.L. Gan, S. Ibrahim, P. Saravanan, Appl. Surf. Sci. 319, 128 (2014)

    ADS  Google Scholar 

  60. W.-C. Lin, W.-D. Yang, I.-L. Huang, T.-S. Wu, Z.-J. Chung, Energy Fuels 23, 2192 (2009)

    Google Scholar 

  61. G. Liu, C. Sun, X. Yan, L. Cheng, Z. Chen, X. Wang, L. Wang, S.C. Smith, G.Q. Lu, H.-M. Cheng, J. Mater. Chem. 19, 2822 (2009)

    Google Scholar 

  62. K.K. Mandari, A.K. Police, J.Y. Do, M. Kang, C. Byon, Int. J. Hydrogen Energy 43, 2073 (2018)

    Google Scholar 

  63. R. Shi, Z. Li, H. Yu, L. Shang, C. Zhou, G.I. Waterhouse, L.-Z. Wu, T. Zhang, Chemsuschem 10, 4650 (2017)

    Google Scholar 

  64. Y.-P. Peng, H. Chen, C.P. Huang, Appl. Catal. B 209, 437 (2017)

    Google Scholar 

  65. L.K. Preethi, R.P. Antony, T. Mathews, L. Walczak, C.S. Gopinath, Sci. Rep. 7, 1 (2017)

    Google Scholar 

  66. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293, 269 (2001)

    Google Scholar 

  67. X. Wang, R. Long, D. Liu, D. Yang, C. Wang, Y. Xiong, Nano Energy 24, 87 (2016)

    Google Scholar 

  68. J. Huang, G. Li, Z. Zhou, Y. Jiang, Q. Hu, C. Xue, W. Guo, Chem. Eng. J. 337, 282 (2018)

    Google Scholar 

  69. J. Gomes, J. Lincho, E. Domingues, R. Quinta-Ferreira, R. Martins, Water 11, 373 (2019)

    Google Scholar 

  70. M. Jung, J.N. Hart, D. Boensch, J. Scott, Y.H. Ng, R. Amal, Appl. Catal. A 518, 221 (2016)

    Google Scholar 

  71. L. Clarizia, G. Vitiello, G. Luciani, I.D. Somma, R. Andreozzi, R. Marotta, Appl. Catal. A 518, 142 (2016)

    Google Scholar 

  72. J. Ran, J. Zhang, J. Yu, M. Jaroniec, S. Z. Qiao, ChemInform 46, (2014)

  73. K.C. Christoforidis, P. Fornasiero, ChemCatChem 9, 1523 (2017)

    Google Scholar 

  74. G. Colón, Appl. Catal. A 518, 48 (2016)

    Google Scholar 

  75. J. Liqiang, S. Xiaojun, S. Jing, C. Weimin, X. Zili, D. Yaoguo, F. Honggang, Sol. Energy Mater. Sol. Cells 79, 133 (2003)

    Google Scholar 

  76. Z. Zhang, J.T. Yates, Chem. Rev. 112, 5520 (2012)

    Google Scholar 

  77. V. Subramanian, E.E. Wolf, P.V. Kamat, J. Am. Chem. Soc. 126, 4943 (2004)

    Google Scholar 

  78. N. Guo, Y. Zeng, H. Li, X. Xu, H. Yu, Mater. Lett. 221, 183 (2018)

    Google Scholar 

  79. J.J. Carey, K.P. McKenna, J. Phys. Chem. C 122, 27540 (2018)

    Google Scholar 

  80. G. Nagaraju, C. N. Tharamani, G. T. Chandrappa, J. Livage, Nanoscale Res. Lett. 2, (2007)

  81. M.S. AlHammad, J. Alloy. Compd. 661, 251 (2016)

    Google Scholar 

  82. W.I. Nawawi, M.A. Nawi, J. Mol. Catal. A Chem. 383–384, 83 (2014)

    Google Scholar 

  83. E.J. Park, B. Jeong, M.-G. Jeong, Y.D. Kim, Curr. Appl. Phys. 14, 300 (2014)

    ADS  Google Scholar 

  84. M. Nasirian, Y.P. Lin, C.F. Bustillo-Lecompte, M. Mehrvar, Int. J. Environ. Sci. Technol. 15, 2009 (2017)

    Google Scholar 

  85. M. Iwase, K. Yamada, T. Kurisaki, B. Ohtani, H. Wakita, Appl. Catal. B 140–141, 327 (2013)

    Google Scholar 

  86. H.-tao Gao, Y.-yuan Liu, C.-hong Ding, D.-mei Dai, G.-jun Liu, Int. J. Miner. Metall. Mater. 18, 606 (2011)

  87. X.F. Lei, X.X. Xue, H. Yang, C. Chen, X. Li, M.C. Niu, X.Y. Gao, Y.T. Yang, Appl. Surf. Sci. 332, 172 (2015)

    ADS  Google Scholar 

  88. C. McManamon, J. O’Connell, P. Delaney, S. Rasappa, J.D. Holmes, M.A. Morris, J. Mol. Catal. A Chem. 406, 51 (2015)

    Google Scholar 

  89. N.T. Nolan, D.W. Synnott, M.K. Seery, S.J. Hinder, A. Van Wassenhoven, S.C. Pillai, J. Hazard. Mater. 211–212, 88 (2012)

    Google Scholar 

  90. Y. Pan, M. Wen, Int. J. Hydrogen Energy 43, 22055 (2018)

    Google Scholar 

  91. Y. Lin, Z. Jiang, C. Zhu, R. Zhang, X. Hu, X. Zhang, H. Zhu, S.H. Lin, Int. J. Hydrogen Energy 42, 4966 (2017)

    Google Scholar 

  92. H. Shi, Y. Lin, Z. Jiang, Y. Su, X. Ding, X. Zhang, H. Zhu, R. Zhang, J. Phys. Chem. Solids 109, 70 (2017)

    ADS  Google Scholar 

  93. Z. Zongyan, Z. Xiang, Y. Juan, L. Qingju, Rare Metal Mater. Eng. 44, 1568 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed equally to the paper.

Corresponding author

Correspondence to Muhammad Ramzan.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irfan, F., Tanveer, M.U., Moiz, M.A. et al. TiO2 as an effective photocatalyst mechanisms, applications, and dopants: a review. Eur. Phys. J. B 95, 184 (2022). https://doi.org/10.1140/epjb/s10051-022-00440-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00440-8

Navigation