Skip to main content
Log in

Low-Temperature Internal Friction and Thermal Conductivity of Plastically Deformed, High-Purity Monocrystalline Niobium

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The low-temperature internal friction Q −1 and thermal conductivity κ of plastically deformed, high-purity niobium monocrystals have been investigated and compared with measurements on an amorphous SiO2 (a-SiO2) specimen. After plastic deformation at intermediate temperatures, an approximately temperature independent internal friction Q −1 was observed with a magnitude comparable to that of the a-SiO2 specimen. Plastic deformation at low temperatures leads to an internal friction Q −1 with a considerably smaller magnitude. In the temperature range between about 0.3 and 1.5K, the lattice thermal conductivity k of the deformed specimens decreases with increasing deformation. It is, however, nearly independent of the amount of deformation at the lowest temperatures investigated. In this temperature regime, the lattice thermal conductivity of the specimens varies proportional to T 3 and has a magnitude as would be expected for an undeformed sample. Additional heat release experiments on an undeformed sample clearly show no long-time energy relaxation effects. We conclude that the defects introduced by plastic deformation cannot be described with the tunneling model which had been proposed to describe the low temperature elastic and thermal properties of amorphous solids. The phonon scattering mechanisms observed in deformed niobium are tentatively related to the dynamic interaction of phonons with geometrical kinks in dislocations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Xiao Liu, EunJoo Thompson, B. E. White, and R. O. Pohl, Phys. Rev. B 59, 11767 (1999).

    Google Scholar 

  2. W. Wasserbäch, S. Abens, S. Sahling, R. O. Pohl, and EunJoo Thompson, Phys. Stat. Sol. (b) 228, 799 (2001).

    Google Scholar 

  3. W. Wasserbäch and EunJoo Thompson, Phys. Stat. Sol. (a) 184, 381 (2001).

    Google Scholar 

  4. R. König, F. Mrowka, I. Usherov-Marshak, P. Esquinazi, and W. Wasserbäch, in Phonons 2001, to appear in Physica B, in press.

  5. W. Wasserbäch, S. Abens, and S. Sahling, Phys. Stat. Sol. (b) 222, 425 (2000).

    Google Scholar 

  6. W. Wasserbäch, S. Abens, and S. Sahling, J. Low Temp. Phys. 123, 251 (2001).

    Google Scholar 

  7. B. Šesták and A. Seeger, Phys. Stat. Sol. (b) 43, 433 (1971).

    Google Scholar 

  8. J. Bardeen, G. Rickayzen, and L. Tewordt, Phys. Rev. 113, 982 (1959).

    Google Scholar 

  9. R. F. Rolsten, Trans. Met. Soc. AIME 215, 478 (1959).

    Google Scholar 

  10. G. Hörz, E. Gebhardt, and W. Dürrschnabel, Z. Metallkde. 56, 554 (1965).

    Google Scholar 

  11. J. C. Lasjaunias, A. Ravex, M. Vandorpe, and S. Hunklinger, Solid State Commun. 17, 1045 (1975).

    Google Scholar 

  12. M. Schwark, F. Pobell, M. Kubota, and R. M. Mueller, J. Low Temp. Phys. 58, 171 (1985).

    Google Scholar 

  13. D. G. Cahill and J. E. Van Cleve, Rev. Sci. Instrum. 60, 2706 (1989).

    Google Scholar 

  14. G. Mattausch, T. Felsner, E. Hegenbarth, B. Kluge, and S. Sahling, Phase Transitions 59, 189 (1996).

    Google Scholar 

  15. C. D. Statham, D. Vesely, and J. W. Christian, Acta Metall. 18, 1243 (1970).

    Google Scholar 

  16. W. Wasserbäch, Phil. Mag. 38, 401 (1978).

    Google Scholar 

  17. W. Wasserbäch, Phys. Stat. Sol. (a) 151, 61 (1995).

    Google Scholar 

  18. G. Taylor and J. W. Christian, Philos. Mag. 15, 853 (1967).

    Google Scholar 

  19. K.A. Topp and D. G. Cahill, Z. Phys. B 101, 235 (1996).

    Google Scholar 

  20. J. B. Casimir, Physica 5, 495 (1938).

    Google Scholar 

  21. B. J. C. van der Hoeven and P. H. Keesom, Phys. Rev. A 134, 1320 (1964).

    Google Scholar 

  22. H. Wipf and K. Neumaier, Phys. Rev. Lett. 52, 1308 (1984).

    Google Scholar 

  23. A. C. Anderson and S. C. Smith, J. Phys. Chem. Solids 34, 111 (1973).

    Google Scholar 

  24. H. Suzuki, in Dislocation in Solids, H. Suzuki, T. Ninomiya, K. Sumino, and S. Takeuchi (eds.) (Tokyo University Press, 1985), p. 551.

  25. W. A. Phillips, J. Low. Temp. Phys. 7 351 (1972).

    Google Scholar 

  26. P. W. Anderson, B. I. Halperin, and C. M. Varma, Phil. Mag. 25, 1 (1972).

    Google Scholar 

  27. T. Vegge, J. P. Sethna, Siew-Ann Cheong, R. W. Jacobsen, C. R. Myers, and D. C. Ralph, Phys. Rev. Lett. 86, 1546 (2001).

    Google Scholar 

  28. J. P. Sethna, private communication.

  29. A. V. Granato and K. Lücke, J. Appl. Phys. 27, 583 (1956).

    Google Scholar 

  30. A. Seeger, Phil. Mag. 1, 651 (1956).

    Google Scholar 

  31. A. Seeger, H. Donth, and F. Pfaff, Discuss. Faraday Soc. 23, 19 (1957).

    Google Scholar 

  32. A. Seeger and P. Schiller, Acta Metall. 10, 348 (1962).

    Google Scholar 

  33. A. Seeger and C. Wüthrich, Nuovo Cimento B 33, 38 (1976).

    Google Scholar 

  34. A. Seeger, in Dislocations 1984, P. Veyssière, L. Kubin, and J. Castaing (eds.), Editions du CNRS (Paris) (1984), p. 141.

    Google Scholar 

  35. M. Maul and H. Schultz, J. Physique 42, C 5-73 (1981).

    Google Scholar 

  36. G. Funk and H. Schultz, Z. Metallkde. 76, 311 (1985).

    Google Scholar 

  37. N. Kuramochi, H. Mizubayashi, and S. Okuda, Phys. Stat. Sol. (a) 77, 633 (1983).

    Google Scholar 

  38. H. Mizubayashi and S. Okuda, Phys. Stat. Sol. (a) 70, 257 (1982).

    Google Scholar 

  39. I. G. Ritchie and G. Fantozzi, in Dislocation in Solids, F. R. N. Nabarro (ed.), Elsevier Science Publishers (1992), Vol. 9, p. 57.

  40. A. Hikata and C. Elbaum, Phys. Rev. B 9, 4529 (1974).

    Google Scholar 

  41. A. Hikata and C. Elbaum, Phys. Rev. Lett. 54, 2418 (1985).

    Google Scholar 

  42. H. Suzuki, Introduction to Dislocation Theory, AGNE Publishing Co., Tokyo (1967), p. 272.

    Google Scholar 

  43. V. I. Alshits, V. L. Indenbohm, and A. A. Shtolberg, Phys. Stat. Sol. (b) 50, 59 (1972).

    Google Scholar 

  44. Y. M. Gupta, A. Hikata, and C. Elbaum, Scripta Metall. 11, 249 (1977).

    Google Scholar 

  45. M. Rodriguez, A. Hikata, and C. Elbaum, in Internal Friction and Ultrasonic Attenuation in Solids, R. R. Hasiguti and M. Mikoshiba (eds.), University of Tokyo Press, Tokyo (1977), p. 519.

    Google Scholar 

  46. J. N. Wang, Mater. Sc. Engng. A 206, 259 (1996).

    Google Scholar 

  47. F. Ackermann, H. Mughrabi, and A. Seeger, Acta Metall. 31, 1353 (1983).

    Google Scholar 

  48. D. Brunner, J. Diehl, and A. Seeger, The Structure and the Properties of Crystal Defects, V. Paidar and L. Lejcek (eds.), Elsevier, Amsterdam/New York (1984), p. 175.

    Google Scholar 

  49. M. Werner, Phys. Stat. Sol. (a) 104, 63 (1987).

    Google Scholar 

  50. M. Werner and A. Seeger, in Proc. 8th Intern. Conf. Strength of Metals and Alloys, Vol. 1, P. O. Kettunen, T. K. Lepistö, and M. E. Lehtonen (eds.), Pergamon, Oxford (1988), p. 173.

    Google Scholar 

  51. U. Holzwarth and A. Seeger, in Proc. 9th Intern. Conf. Strength of Metals and Alloys, Vol. 1, D. G. Brandon, R. Chaim, and A. Rosen (eds.), Freund Publ. House, London (1991), p. 577.

    Google Scholar 

  52. D. Brunner and J. Diehl, Phys. Stat. Sol. (a) 124, 155 (1991).

    Google Scholar 

  53. D. Brunner and J. Diehl, Phys. Stat. Sol. (a) 124, 455 (1991).

    Google Scholar 

  54. L. Hollang, M. Hommel and A. Seeger, Phys. Stat. Sol. (a) 160, 355 (1997).

    Google Scholar 

  55. L. Hollang and A. Seeger, Mater. Trans., JIM 41, 141 (2000).

    Google Scholar 

  56. D. Brunner, Mater. Trans., JIM 41, 152 (2000).

    Google Scholar 

  57. K. Ohashi and Y. H. Ohashi, Phil. Mag. 38, 187 (1978).

    Google Scholar 

  58. J. Lothe, J. Appl. Phys. 33, 2116 (1962).

    Google Scholar 

  59. A. C. Anderson, in Dislocations in Solids, Vol. 6, F. R. N. Nabarro (ed.), North-Holland Publishing Company, Amsterdam (1983), p. 235.

    Google Scholar 

  60. A. C. Anderson, in Phonon Scattering in Condensed Matter, W. Eisenmenger, K. Lassmann, and S. Döttinger (eds.), Springer, Berlin (1984), p. 309.

    Google Scholar 

  61. D. Eckhardt and W. Wasserbäch, Philos. Mag. A 37, 621 (1978).

    Google Scholar 

  62. P. Debye, Vorträge über die Kinetische Theorie der Materie und der Elektrizität (B. G. Teubner, Berlin, 1914), p. 46.

    Google Scholar 

  63. T. Ninomiya, J. Phys. Soc. Jpn. 25, 830 (1968).

    Google Scholar 

  64. T. Ninomiya, in Fundamental Aspects of Dislocation Theory, A. Simmons, R. deWit, and R. Bullough (eds.), Natl. Bur. Stand. (U.S.) Spec. Publ. No. 317 (U.S. GPO, Washington, D.C., 1970), Vol. I, p. 315.

    Google Scholar 

  65. G. Schottky, Phys. Stat. Sol. 5, 697 (1964).

    Google Scholar 

  66. T. Suzuki, in Phonons in Condensed Matter V, A. C. Anderson and J. P. Wolfe (eds.), Springer Verlag, Berlin (1986), p. 263.

    Google Scholar 

  67. J. D. Eshelby, Proc. Roy. Soc. (London) A 266, 222 (1962).

    Google Scholar 

  68. J. A. Garber and A. V. Granato, J. Phys. Chem. Solids 31, 1863 (1970).

    Google Scholar 

  69. R. L. Fleischer, Acta Metall. 10, 835 (1962).

    Google Scholar 

  70. F. A. Schmidt and O. N. Carlson, J. Less-Common Metals 26, 247 (1972).

    Google Scholar 

  71. C. Y. Ang, Acta Met. 1, 123 (1953).

    Google Scholar 

  72. S. Hunklinger and A. K. Raychaudhuri, in Progress in Low Temperature Physics, D. F Brewer (ed.), Elsevier Science Publishers (1986), p. 265.

  73. P. Esquinazi and R. König, in Tunneling Systems in Amorphous and Crystalline Solids, P. Esquinazi (ed.), Springer Verlag (1998), p. 145.

  74. E. Coccia and T. O. Niinikoski, Lett. Nuovo Cimento 41, 242 (1984).

    Google Scholar 

  75. W. Duffy, J. Appl. Phys. 68, 5601 (1990).

    Google Scholar 

  76. T. Suzuki, P. Turner, J. Ferreirinho, D. G. Blair, and R. S. Crisp, J. Low. Temp. Phys. 58, 37 (1985).

    Google Scholar 

  77. G. A. Alers and D. L. Waldorf, Bull. Am. Phys. Soc. 7, 236 (1961).

    Google Scholar 

  78. G. A. Alers and J. E. Zimmerman, Phys. Rev. A 139, 414 (1965).

    Google Scholar 

  79. A. Alers and K. Salama, in Dislocation Dynamics, A. R. Rosenfiled, G. T. Hahn, A. C. Bement, and R.I. Jaffee (eds.), McGraw Hill, New York (1968), p. 211.

    Google Scholar 

  80. P. W. Mason, in Fundamental Aspects of Dislocation Theory, A. Simmons, R. de Witt, and R. Bullough, Natl. Bur. Stand. (U.S.) Spec. Publ. No. 317, U.S. GPO, Washington, D.C. (1970), Vol. I, p. 447.

    Google Scholar 

  81. A. Hikata and C. Elbaum, J. Physique 46, C10-293 (1985).

    Google Scholar 

  82. J. T. Al-Haidary, N. J. Petch, and E. R. De Los Rios, Phil. Mag. A 47, 869 (1983).

    Google Scholar 

  83. K. Sassa, W. Petry, and G. Vogl, Phil. Mag. A 48, 41 (1983).

    Google Scholar 

  84. EunJoo Thompson and R. O. Pohl, Mat. Res. Soc. Symp. Proc. 562, 183 (1999).

    Google Scholar 

  85. J. Nagakawa and M. Meshii, J. Nuclear Materials 101, 162 (1981).

    Google Scholar 

  86. B. Kübler, M. Burst, R. Haueisen, and G. Weiss, in Phonons 2001, to appear in Physica B, in the press.

  87. A. V. Granato and K. Lücke, J. Appl. Phys. 52, 7136 (1981).

    Google Scholar 

  88. T. Kosugi, D. McKay, and A. V. Granato, J. Physique IV, Colloque 68, C8-863 (1996).

    Google Scholar 

  89. T. Kosugi and T. Kino, J. Phys. Soc. Japan 53, 3837 (1984).

    Google Scholar 

  90. T. Kosugi and T. Kino, Mat. Sci. Eng. A 164, 316 (1993).

    Google Scholar 

  91. T. Kosugi, D. McKay, and A. V. Granato, J. Alloys & Compd. 310, 111 (2000).

    Google Scholar 

  92. P. Esquinazi, R. König, D. Valentin, and F. Pobell, J. Alloys & Compd. 211–212, 27 (1994).

    Google Scholar 

  93. R. König, P. Esquinazi, and B. Neppert, Phys. Rev. B 51, 11424 (1995).

    Google Scholar 

  94. P. G. Bordoni, M. Nuovo, and V. Verdini, Nuovo Cimento Suppl. 18, 55 (1960).

    Google Scholar 

  95. G. E. Dieter, Mechanical Metallurgy, McGraw Hill, New York (1988), Chaps. 15, 19.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wasserbäch, W., Sahling, S., Pohl, R.O. et al. Low-Temperature Internal Friction and Thermal Conductivity of Plastically Deformed, High-Purity Monocrystalline Niobium. Journal of Low Temperature Physics 127, 121–151 (2002). https://doi.org/10.1023/A:1014848312572

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014848312572

Keywords

Navigation