Skip to main content
Log in

Crystalline Host Phases for Actinides, Obtained by Self-Propagating High-Temperature Synthesis

  • Published:
Radiochemistry Aims and scope

Abstract

Host matrices for actinides prepared by self-propagating high-temperature synthesis are studied. The matrices consist of a pyrochlore or fluorite phase and metallic molybdenum. The factor determining the structural type of the crystal lattice of the target phase is the ionic radius ratio. When the difference in the ionic radii is insignificant, as in the case of Y3 + (r 0.102 nm) and Zr4 + (r 0.084 nm), the oxide Zr1 - xYxO2 - 0 . 5 x with a fluorite structure is formed, in which the cations occupy the eight-coordinate sites. This structure permits incorporation of heavy lanthanides and tetravalent actinides: U4 + (r 0.10 nm), Np4 + (r 0.098 nm), and Pu4 + (r 0.096 nm). When the difference in the ionic radii is more considerable, as in the case of Y3 + and Ti4 + (r 0.061 nm), a pyrochlore-related structure is realized. In this case the cations occupy different (eight- or six-coordinate) sites. The pyrochlore structure is preserved if the radii of ions occupying different structural sites change in parallel. This structure is typical of zirconates of trivalent actinides and light REEs. The decision on the major host phase for actinides is determined by the waste composition. At low content of light REEs and americium an oxide with a fluorite-related structure shows promise. At high content of these elements, zirconates and titanates with the pyrochlore structure are more stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Egorov, N.N., Zakharov, M.A., Lazarev, L.N., et al., Trudy Vtoroi konferentsii yadernogo obshchestva (Proc. 2nd Conf. of Nuclear Soc.), Moscow, 1992, pp. 439–441.

  2. Egorov, N.N., Zakharkin, B.S., Lazarev, L.N., et al., in Radioekologicheskie problemy v yadernoi energetike i pri konversii proizvodstva (Radioecological Problems of Nuclear Power Engineering and Conversion of Works), Obninisk, 1994, part 1, pp. 33–42.

  3. Fukazawa, T. and Kamoshida, M., Proc. Int. Conf. on Radioactive Waste Management and Environmental Remediation (ICEM'99), New York: ASME, 1999, CD-ROM, file 383.pdf.

    Google Scholar 

  4. Kagramanyan, V.S., Kochetkov, A.L., Rabotnov, I.S., and Tsikunov, A.G., in Radioekologicheskie problemy v yadernoi energetike i pri konversii proizvodstva (Radioecological Problems of Nuclear Power Engineering and Conversion of Works), Obninisk, 1994, part 1, pp. 43–48.

  5. Kuramoto, K., Makino, Y., Yanagi, T., et al., Proc. Int. Conf. on Evaluation of Emerging Nuclear Fuel Cycle Systems (Global'95), 1995, vol. 2, pp 1838–1845.

    Google Scholar 

  6. Tasiro, S., Inagaki, Y., Oyamada, K., and Suzuki, A., Proc. 5th Int. Conf. on Radioactive Waste Management and Environmental Remediation (ICEM'95), New York: ASME, 1995, pp. 395–401.

    Google Scholar 

  7. Dzekun, G.E., Gelis, V.M., Kudryavtseva, S.P., et al., Proc. Int. Meet. on Nuclear Hazardous Waste Management (Spectrum'94), ANS, 1994, pp. 565–569.

  8. Romanovsky, V.N., Babain, V.A., Shadrin, A.Yu., et al., Proc. 5th Int. Conf. on Radioactive Waste Management and Environmental Remediation (ICEM'95), New York: ASME, 1995, pp. 431–432.

    Google Scholar 

  9. Yamana, H. and Moriyama, H., Proc. Int. Conf. on Radioactive Waste Management and Environmental Remediation (ICEM'99), New York: ASME, 1999, CD-ROM, file 395.pdf.

    Google Scholar 

  10. Gong, W.L., Lutze, W., and Ewing, R.C., Scientific Basis for Nuclear Waste Management XXII, Mater. Res. Soc. Symp. Proc., 1999, vol. 556, pp. 63–70.

    Google Scholar 

  11. Vance, E.R., Begg, B.D., Day, R.A., and Ball, C.J., Scientific Basis for Nuclear Waste Management XVIII, Mater. Res. Soc. Symp. Proc., 1995, vol. 353, part 2, pp. 767–774.

    Google Scholar 

  12. Raison, P.E., Haire, R.G., Sato, T., and Ogawa, T., Scientific Basis for Nuclear Waste Management XXII, Mater. Res. Soc. Symp. Proc., 1999, vol. 556, pp. 3–10.

    Google Scholar 

  13. Ebbinghaus, B.B., Van Konynenburg, R.A., Ryerson, F.J., et al., Proc. Int. Conf.HLW, LLW, Mixed Wastes and Environment Restoration Working Towards a Cleaner Environment,” Tuscon, AZ, 1998, CD-ROM, session 65–04.

  14. Aleksandrov, V.I., Osiko, V.V., Prokhorov, A.M., and Tatarintsev, V.M., Vestn. Akad. Nauk SSSR, 1973, no. 12, pp. 29–39.

    Google Scholar 

  15. Lifanov, F.A., Stefanovskii, S.V., and Sobolev, I.A., Radiokhimiya, 1993, vol. 35, no. 3, pp. 98–105.

    Google Scholar 

  16. Sobolev, I.A., Stefanovsky, S.V., and Lifanov, F.A., Scientific Basis for Nuclear Waste Management XVIII, Mater. Res. Soc. Symp. Proc., 1995, vol. 353, part 2, pp. 833–840.

    Google Scholar 

  17. Stefanovsky, S.V., Yudintsev, S.V., Nikonov, B.S., et al., Scientific Basis for Nuclear Waste Management XXII, Mater. Res. Soc. Symp. Proc., 1999, vol. 556, pp. 27–34.

    Google Scholar 

  18. Merzhanov, A.G., Borovinskaya, I.P., Makhonin, N.S., et al., RF Patent 2 065 216, Priority of March 18, 1994.

  19. Konovalov, E.E., Starkov, O.V., Myshkovskii, M.P., and Gudkov, L.S., Izv. Vyssh. Uchebn. Zaved., Yadern. Energet., 1997, no. 3, pp. 36–39.

    Google Scholar 

  20. Glagovskii, E.M., Kuprin, A.V., Pelevin, L.P., et al., At. Energ., 1999, vol. 87, no. 1, pp. 57–61.

    Google Scholar 

  21. Maddrell, E.R., Scientific Basis for Nuclear Waste Management XIX, Mater. Res. Soc. Symp. Proc., 1996, vol. 412, pp. 353–360.

    Google Scholar 

  22. Wang, S.X., Begg, B.D., Wang, L.M., et al., J. Mater. Res., 1999, vol. 14, no. 12, pp. 4470–4473.

    Google Scholar 

  23. Moriga, T., Yoshiasa, A., Kanamaru, F., et al., Solid State Ionics, 1989, vol. 31, pp. 319–328.

    Article  Google Scholar 

  24. Aleshin, E. and Roy, R., J. Am. Ceram. Soc., 1962, vol. 45, pp. 18–25.

    Google Scholar 

  25. Chakoumakos, B.S., J. Solid State Chem., 1984, vol. 53, pp. 120–129.

    Google Scholar 

  26. Chakoumakos, B.S. and Ewing, R.C., Scientific Basis for Nuclear Waste Management VIII, Mater. Res. Soc. Symp. Proc., 1985, vol. 44, pp. 641646.

    Google Scholar 

  27. Belov, N.V., Mineral. Sb. L'vov. Geol. O–va., 1950, no. 4, pp. 21–34.

    Google Scholar 

  28. Isupov, V.A., Kristallografiya, 1958, vol. 3, no. 1, pp. 99100.

    Google Scholar 

  29. Shannon, R.D., Acta Crystallogr., Sect. A, 1976, vol. 32, pp. 751767.

    Google Scholar 

  30. Shoup, S.S. and Bambergher, C.E., Scientific Basis for Nuclear Waste Management XX, Mater. Res. Soc. Symp. Proc., 1997, vol. 465, pp. 379–386.

    Google Scholar 

  31. Ringwood, A.E., Miner. Mag., 1985, vol. 49, part 2, pp. 159–176.

    Google Scholar 

  32. Solomah, A.G., Sridhar, T.S., and Jones, S.C., Advances in Ceramic Nuclear Waste Management, Columbus, Ohio: Am. Ceram. Soc., 1986, vol. 20, pp. 259–265.

    Google Scholar 

  33. Sombret, G.S., in Geological Disposal of High Level Radioactive Wastes, Athens: Teoph., 1987, pp. 69–160.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glagovskii, E.M., Yudintsev, S.V., Kuprin, A.V. et al. Crystalline Host Phases for Actinides, Obtained by Self-Propagating High-Temperature Synthesis. Radiochemistry 43, 632–638 (2001). https://doi.org/10.1023/A:1014824328367

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014824328367

Keywords

Navigation