Skip to main content
Log in

Proteases and the Biology of Glioma Invasion

  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Despite optimal clinical treatment, the prognosis for malignant gliomas remains poor. One of the primary reasons for treatment failure is not diffuse dissemination, but local invasion. Recently, there has been an increase in information regarding specific molecules that determine the aggressiveness and invasion potential of high-grade astrocytic tumors. In particular, expression of matrix metalloproteases in high-grade gliomas appears to correlate with tissue invasiveness. It is the purpose of the present review to describe the connection between alterations in growth-related genes, protease activity, and tumor biology, and how these connections may suggest potential novel therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Salcman M: Glioblastoma and malignant astrocytoma. In: Kaye AH, Laws ER (eds) Brain Tumors: An Encyclopedic Approach. Churchill Livingstone, New York, 1995, pp 449-477

    Google Scholar 

  2. Berger MS, Wilson CB: The Gliomas. W.B. Saunders, Philadelphia, 1999

    Google Scholar 

  3. Berens ME, Rutka JT, Rosenblum ML: Brain tumor epidemiology, growth and invasion. Neurosurg Clin N Am 1: 1-18, 1990

    Google Scholar 

  4. Bramwell B: Intracranial Tumours. Pentland, Edinburgh, 1888

    Google Scholar 

  5. Giese A, Westphal M: Glioma invasion in the central nervous system. Neurosurgery 39: 235-252, 1996

    Google Scholar 

  6. Chicoine MR, Silbergeld DL: The in vitro motility of human gliomas increases with increasing grade of malignancy. Cancer 75: 2904-2909, 1995

    Google Scholar 

  7. Burger PC: Pathologic anatomy and CT correlations in the glioblastoma multiforme. Appl Neurophysiol 46: 180-187, 1983

    Google Scholar 

  8. Choucair AK, Levin VA, Gutin PH, Davis RL, Silver P, Edwards MS, Wilson CB: Development of multiple lesions during radiation therapy and chemotherapy in patients with gliomas. J Neurosurg 65: 654-658, 1986

    Google Scholar 

  9. Liang BC, Thornton AF, Jr, Sandler HM, Greenberg HS: Malignant astrocytomas: focal tumor recurrence after focal external beam radiation therapy. J Neurosurg 75: 559-563, 1991

    Google Scholar 

  10. Kelly PJ, Daumas-Duport C, Kispert DB, Kall BA, Scheithauer BW, Illig JJ: Imaging-based stereotaxic serial biopsies in untreated intracranial glial neoplasms. J Neurosurg 66: 865-874, 1987

    Google Scholar 

  11. Rutka JT, Myatt CA, Giblin JR, Davis RL, Rosenblum ML: Distribution of extracellular matrix proteins in primary human brain tumors: an immunohistochemical analysis. Can J Neurol Sci 14: 25-30, 1987

    Google Scholar 

  12. Strojnik T, Kos J, Zidanik B, Golouh R, Lah TT: Cathepsin B immunohistochemical staining in tumor and endothelial cells is a new prognostic factor for survival in patients with brain tumors. Clin Cancer Res 5: 559-567, 1999

    Google Scholar 

  13. Strojnik T, Zidanik B, Kos J, Lah TT: Cathepsins B and L are markers for clinically invasive types of meningiomas. Neurosurgery 48: 598-605, 2001

    Google Scholar 

  14. Matrisian LM: The matrix-degrading metalloproteinases. BioEssays 14: 455-463, 1992

    Google Scholar 

  15. Nagase H, Woessner JF: Matrix metalloproteinases. J Biol Chem 274: 21491-21494, 1999

    Google Scholar 

  16. Woessner JF: The family of matrix metalloproteinases. Ann NY Acad Sci 732: 11-21, 1994

    Google Scholar 

  17. Monard D: Cell-derived proteases and protease inhibitors as regulators of neurite outgrowth. Trends Neurosci 11: 541-544, 1988

    Google Scholar 

  18. Liotta LA, Tryggvason K, Garbisa S, Hart I, Foltz CM, Shafie S: Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature 284: 67-68, 1980

    Google Scholar 

  19. Mignatti P, Rifkin DB: Biology and biochemistry of proteinases in tumor invasion. Physiol Rev 73: 161-195, 1993

    Google Scholar 

  20. Sato H, Takino T, Okada Y, Cao J, Shinagawa A, Yamamoto E, Seiki M: A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature 370: 61-65, 1994

    Google Scholar 

  21. MacDougall JR, Matrisian LM: Contributions of tumor and stromal matrix metalloproteases to tumor progression, invasion and metastasis. Cancer Metast Rev 14: 351-362, 1995

    Google Scholar 

  22. Nakano A, Tani E, Miyazaki K, Yamamoto Y, Furuyama J: Matrix metalloproteinases and tissue inhibitors of metalloproteinases in human gliomas. J Neurosurg 83: 298-307, 1995

    Google Scholar 

  23. Uhm JH, Dooley NP, Villemure J-G, Yong VW: Mechanisms of glioma invasion: role of matrixmetalloproteinases. Can J Neurol Sci 24: 3-15, 1997

    Google Scholar 

  24. Nakagawa T, Kubota T, Kabuto M, Sato K, Kawano H, Hayakawa T, Okada Y: Production of matrix metalloproteinases and tissue inhibitor of metalloproteinases-1 by human brain tumors. J Neurosurg 81: 69-77, 1994

    Google Scholar 

  25. Lund-Johansen M, Rucklidge GJ, Milne G, Bjerkvig RA: Metalloproteinase capable of destroying cultured brain tissue isolated from rat glioma cells. Anticancer Res 11: 1000-1006, 1991

    Google Scholar 

  26. Paganetti PA, Caroni P, Schwab ME: Glioblastoma infiltration into central nervous system tissue in vitro: involvement of a metalloprotease. J Cell Biol 107: 2281-2291, 1988

    Google Scholar 

  27. Vaithilingam IS, McDonald W, Brown NK, Stroude E, Cook RA, Del Maestro RF: Serum proteolytic activity during the growth of C6 astrocytoma. J Neurosurg 77: 595-600, 1992

    Google Scholar 

  28. Rao JS, Steck PA, Mohanam S, Stetler-Stevenson WG, Liotta LA: Elevated levels of Mr 92,000 type IV collagenase in human brain tumors. Cancer Res 53: 2208-2211, 1993

    Google Scholar 

  29. Yamamoto M, Sawaya R, Mohanam S, Loskutoff DJ, Bruner JM, Rao VH, Oka K, Tomonaga M, Nicolson GL, Rao JS: Expression and cellular localization of messenger RNA for plasminogen activator inhibitor type 1 in human astrocytomas in vivo. Cancer Res 54: 3329-3332, 1994

    Google Scholar 

  30. Rao JS, Steck PA, Tofilon P, Boyd D, Ali-Osman F, Stetler-Stevenson WG, Liotta LA, Sawaya R: Role of plasminogen activator and of 92-kDa type IV collagenase in glioblastoma invasion using an in vitro matrigel model. J Neuro-Oncol 18: 129-138, 1994

    Google Scholar 

  31. Yamamoto M, Mohanam S, Sawaya R, Fuller GN, Seiki M, Sato H, Gokaslan ZL, Liotta LA, Nickolson GL, Rao JS: Differential expression of membrane-type matrix metalloproteinase and its correlation with gelatinase A activation in human malignant brain tumors in vivo and in vitro. Cancer Res 56: 384-392, 1996

    Google Scholar 

  32. Abe T, Mori T, Kohno K, Seiki M, Hayakawa T, Welgus HG, Hori S, Kuwano M: Expression of 72 kDa type IV collagenase and invasion activity of human glioma cells. Clin Exp Metastasis 12: 296-304, 1994

    Google Scholar 

  33. Uhm JH, Dooley NP, Villemure J-G, Yong VW: Glioma invasion in vitro: regulation by matrix metalloprotease-2 and protein kinase C. Clin Exp Metastasis 14: 421-433, 1996

    Google Scholar 

  34. Sawaya RE, Yamamoto M, Gokaslan ZL, Wang SW, Mohanam S, Fuller GN, McCutcheon IE, Stetler-Stevenson WG, Nicolson GL, Rao JS: Expression and localization of 72 kDa type IV collagenase (MMP-2) in human malignant gliomas in vivo. Clin Exp Metastasis 14: 35-42, 1996

    Google Scholar 

  35. Sato H, Seiki M: Membrane-type matrix metalloproteinases (MT-MMPs) in tumor metastasis. J Biochem 119: 209-215, 1996

    Google Scholar 

  36. Burger PC: Classification, grading, and patterns of spread of malignant gliomas. In: Apuzzo MLJ (ed.) Malignant Cerebral Glioma. American Association of Neurological Surgeons, Park Ridge, 1990, pp 3-17

    Google Scholar 

  37. Schiffer D: Patterns of tumor growth. In: Salcman M (ed.) Neurobiology of Brain Tumors. Williams & Wilkins, Baltimore, 1991, pp 229-249

    Google Scholar 

  38. Yamada T, Yoshiyama Y, Sato H, Seiki M, Shinagawa A, Takahashi M: White matter microglia produce membranetype matrix metalloprotease, an activator of gelatinase A, in human brain tissues. Acta Neuropathol 90: 421-424, 1995

    Google Scholar 

  39. Belièen AT, Paganetti PA, Schwab ME: Membrane-type 1 matrix metalloproteinase (MT1-MMP) enables invasive migration of glioma cells in central nervous system white matter. J Cell Biol 144: 373-384, 1999

    Google Scholar 

  40. Rifkin DB, Moscatelli D, Bizik J, Quarto N, Blei F, Dennis P, Flaumenhaft R, Mignatti P: Growth factor control of extracellular proteolysis. Cell Differ Dev 32: 313-318, 1990

    Google Scholar 

  41. Kerr LD, Miller DB, Matrisian LM: TGF-beta 1 inhibition of transin/stromelysin gene expression is mediated through a Fos binding sequence. Cell 61: 267-278, 1990

    Google Scholar 

  42. McDonnell SE, Kerr LD, Matrisian LM: Epidermal growth factor stimulation of stromelysin mRNA in rat fibroblasts requires induction of proto-oncogenes c-fos and c-jun and activation of protein kinase C. Mol Cell Biol 10: 4284-4293, 1990

    Google Scholar 

  43. Brew K, Dinakarpandian D, Nagase H: Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim Biophys Acta 1477: 267-283, 2000

    Google Scholar 

  44. Boone TC, Johnson MJ, DeClerckYA, Langley KE: cDNA cloning and expression of a metalloproteinase inhibitor related to tissue inhibitor of metalloproteinases. Proc Natl Acad Sci USA 87: 2800-2804, 1990

    Google Scholar 

  45. DeClerck YA, Imren S: Protease inhibitors: role and potential therapeutic use in human cancer. Eur J Cancer 30A: 2170-2180, 1994

    Google Scholar 

  46. DeClerck YA, Perez N, Shimada H, Boone TC, Langley KE, Taylor SM: Inhibition of invasion and metastasis in cells transfected with an inhibitor of metalloproteinases. Cancer Res 52: 701-708, 1992

    Google Scholar 

  47. Matsuzawa K, Fukuyama K, Hubbard SL, Dirks PB, Rutka JT: Transfection of an invasive human astrocytoma cell line with a TIMP-1 cDNA: modulation of astrocytoma invasive potential. J Neuropathol Exp Neurol 55: 88-96, 1996

    Google Scholar 

  48. Mohanam S, Wang SW, Rayford A, Yamamoto M, Sawaya R, Nakajima M, Liotta LA, Nicolson GL, Stetler-Stevenson WG, Rao JS: Expression of tissue inhibitors of metalloproteinases: negative regulators of human glioblastoma invasion in vivo. Clin Exp Metastasis 13: 57-62, 1995

    Google Scholar 

  49. Barker FG, Israel MA: The molecular biology of brain tumors. Neurol Clin 13: 701-721, 1995

    Google Scholar 

  50. Rasheed BK, Wiltshire RN, Bigner SH, Bigner DD: Molecular pathogenesis of malignant gliomas. Curr Opin Oncol 11: 162-167, 1999

    Google Scholar 

  51. Hartwell LH, Kastan MB: Cell cycle control and cancer. Science 266: 1821-1828, 1994

    Google Scholar 

  52. Hunter T, Pines J: Cyclins and cancer II: cyclinDand CDK inhibitors come of age. Cell 79: 573-582, 1994

    Google Scholar 

  53. Louis DN, Von Deimling A, Chung RY, Rubio MP, Whaley JM, Eibl RH, Ohgaki H, Wiestler OD, Thor AD, Seizinger BR: Comparative study of p53 gene and protein alterations in human astrocytic tumors. J Neuropathol Exp Neurol 52: 31-38, 1993

    Google Scholar 

  54. Tortosa A, Ino Y, Odell N, Swilley S, Sasaki H, Louis DN, Henson JW: Molecular genetics of radiographically defined de novo glioblastoma multiforme. Neuropathol Appl Neurobiol 26: 544-552, 2000

    Google Scholar 

  55. Kraus JA, Bolin C, Wolf HK, Neumann J, Kindermann D, Fimmers R, Forster F, Baumann A, Schlegel U: P53 alterations and clinical outcome in low-grade astrocytomas. Genes Chromosomes Cancer 10: 143-149, 1994

    Google Scholar 

  56. Rasheed BK, McLendon RE, Herndon JE, Friedman HS, Friedman AH, Bigner DD, Bigner SH: Alterations of the TP53 gene in human gliomas. Cancer Res 54: 1324-1330, 1994

    Google Scholar 

  57. Venter DJ, Bevan KL, Ludwig RL, Riley TE, Jat PS, Thomas DG, Noble MD: Retinoblastoma gene deletions in human glioblastomas. Oncogene 6: 445-448, 1991

    Google Scholar 

  58. Hamel W, Westphal M, Shepard HM: Loss in expression of the retinoblastoma gene product in human gliomas is associated with advanced disease. J Neuro-Oncol 16: 159-165, 1993

    Google Scholar 

  59. Fults D, Brockmeyer D, Tullous MW, Pedone CA, Cawthon RM: p53 mutation and loss of heterozygosity on chromosomes 17 and 10 during human astrocytoma progression. Cancer Res 52: 674-679, 1992

    Google Scholar 

  60. Zhou XP, Li YJ, Hoang-Xuan K, Laurent-Puig P, Mokhtari K, Longy M, Sanson M, Delattre JY, Thomas G, Hamelin R: Mutational analysis of the PTEN gene in gliomas: molecular and pathological correlations. Int J Cancer 84: 150-154, 1999

    Google Scholar 

  61. Hagedorn HG, Bachmeier BE, Nerlich AG: Synthesis and degradation of basement membranes and extracellular matrix and their regulation by TGF-beta in invasive carcinomas. Int J Oncol 18: 669-681, 2001

    Google Scholar 

  62. Sun Y, Wenger L, Rutter JL, Brinckerhoff CE, Cheung HS: p53 down-regulates human matrix metalloproteinase-1 (collagenase-1) gene expression. J Biol Chem 274: 11535-11540, 1999

    Google Scholar 

  63. Toschi E, Rota R, Antonini A, Melillo G, Capogrossi MC: Wild-type p53 gene transfer inhibits invasion and reduces matrix metalloproteinase-2 levels in p53-mutated human melanoma cells. J Invest Dermatol 114: 1188-1194, 2000

    Google Scholar 

  64. Ewen ME, Sluss HK, Scherr CL, Matsushime K, Kato J, Livingston D: Functional interactions of the retinoblastoma protein with mammalian D-type cyclins. Cell 73: 487-497, 1993

    Google Scholar 

  65. Lukas J, Pagano M, Staskova Z, Draetta G, Bartek J: Cyclin-D1 protein oscillates and is essential for cell-cycle progression in human tumour cell lines. Oncogene 9: 707-718, 1994

    Google Scholar 

  66. Michalides R, Van Veelen N, Hart A, Loftus B, Wientjens E, Balm A: Overexpression of cyclin D1 correlates with recurrence in a group of forty-seven operable squamous cell carcinomas of the head and neck. Cancer Res 55: 975-978, 1995

    Google Scholar 

  67. Arato-Ohshima T, Sawa H: Over-expression of cyclin D1 induces glioma invasion by increasing matrix metalloproteinase activity and cell motility. Int J Cancer 83: 387-392, 1999

    Google Scholar 

  68. Takahashi JA, Fukumoto M, Igarashi K, Oda Y, Kikuchi H, Hatanaka M: Correlation of basic fibroblast growth factor expression levels with the degree of malignancy and vascularity in human gliomas. J Neurosurg 76: 792-798, 1992

    Google Scholar 

  69. Ueba T, Takahashi JA, Fukumoto M, Ohta M, Ito N, OdaY, Kikuchi H, Hatanaka M: Expression of fibroblast growth factor receptor-1 in human glioma and meningioma tissues. Neurosurgery 34: 221-225, 1994

    Google Scholar 

  70. Morrison RS, Yamaguchi F, Saya H, Bruner JM, Yahanda AM, Donehower LA, Berger M: Basic fibroblast growth factor and fibroblast growth factor receptor I are implicated in the growth of human astrocytomas. J Neuro-Oncol 18: 207-216, 1994

    Google Scholar 

  71. Hermansson M, Nister M, Betsholtz C, Heldin CH, Westermark B, Funa K: Endothelial cell hyperplasia in human glioblastoma: coexpression of mRNA for plateletderived growth factor (PDGF) B chain and PDGF receptor suggests autocrine growth stimulation. Proc Natl Acad Sci USA 85: 7748-7752, 1988

    Google Scholar 

  72. Maxwell M, Naber SP, Wolfe HJ, Galanopoulos T, Hedley-Whyte ET, Black PM, Antoniades HN: Coexpression of platelet derived growth factor (PDGF) and PDGFreceptor genes by primary human astrocytomas may contribute to their development and maintenance. J Clin Invest 86: 131-140, 1990

    Google Scholar 

  73. Hermanson M, Funa K, Hartman M, Claesson-Welsh L, Heldin CH, Westermark B, Nister M: Platelet-derived growth factor and its receptors in human glioma tissue: expression of messenger RNA and protein suggests the presence of autocrine and paracrine loops. Cancer Res 52: 3213-3219, 1992

    Google Scholar 

  74. Libermann TA, Nusbaum HR, Razon N, Kris R, Lax I, Soreq H, Whittle N, Waterfield MD, Ullrich A, Schlessinger J: Amplification, enhanced expression and possible rearrangement of EGF receptor gene in primary human brain tumors of glial origin. Nature 313: 144-147, 1985

    Google Scholar 

  75. Fuller GN, Bigner SH: Amplified cellular oncogenes in neoplasms of the human central nervous system. Mutat Res 276: 299-306, 1992

    Google Scholar 

  76. Collins VP: Gene amplification in human gliomas. Glia 15: 289-296, 1995

    Google Scholar 

  77. Wong AJ, Ruppert JM, Bigner SH, Grzeschik CH, Humphrey PA, Bigner DS, Vogelstein B: Structural alterations of the epidermal growth factor receptor gene in human gliomas. Proc Natl Acad Sci USA 89: 2965-2969, 1992

    Google Scholar 

  78. Ekstrand AJ, Longo N, Hamid ML, Olson JJ, Liu L, Collins VP, James CD: Functional characterization of an EGF receptor with a truncated extracellular domain expressed in glioblastomas with EGFR gene amplification. Oncogene 9: 2313-2320, 1994

    Google Scholar 

  79. Feldkamp MM, Lala P, Lau N, Roncari L, Guha A: Expression of activated epidermal growth factor receptors, ras-guanosine triphosphate, and mitogen-activated protein kinase in human glioblastoma multiforme specimens. Neurosurgery 45: 1442-1453, 1999

    Google Scholar 

  80. Cox G, Jones JL, O'Byrne KJ: Matrix metalloproteinase 9 and the epidermal growth factor signal pathway in operable non-small cell lung cancer. Clin Cancer Res 6: 2349-2355, 2000

    Google Scholar 

  81. Charoenrat OP, Rhys-Evans P, Modjtahedi H, Court W, Box G, Eccles S: Overexpression of epidermal growth factor receptor in human head and neck squamous carcinoma cell lines correlates with matrix metalloproteinase-9 expression and in vitro invasion. Int J Cancer 86: 307-317, 2000

    Google Scholar 

  82. Baltuch GH, Dooley NP, Villemure J-G, Yong VW: Protein kinase C and growth regulation of malignant gliomas. Can J Neurol Sci 22: 264-271, 1995

    Google Scholar 

  83. Couldwell WT, Antel JP, Yong VW: Protein kinase C (PKC) activity correlates with growth rate of gliomas. II: Effects of glioma mitogens and modulators of PKC. Neurosurgery 31: 717-724, 1992

    Google Scholar 

  84. Ahmad S, Mineta T, Martuza RL, Glazer RI: Antisense expression of protein kinaseCalpha inhibits the growth and 158 tumorigenicity of human glioblastoma cells. Neurosurgery 35: 904-909, 1994

    Google Scholar 

  85. Itoh T, Tanioka M, Yoshida H, Yoshioka T, Nishimoto H, Itohara S: Reduced angiogenesis and tumor progression in gelatinase A-deficient mice. Cancer Res 58: 1048-1051, 1998

    Google Scholar 

  86. Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, Tanzawa K, Thorpe P, Itohara S, Werb Z, Hanahan D: Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2: 737-744, 2000

    Google Scholar 

  87. Brady LW, Miyamoto C, Woo DV, Rackover M, Emrich J, Bender H, Dadparvar S, Steplewski Z, Koprowski H, Black PM: Malignant astrocytomas treated with iodine-125 labeled monoclonal antibody against epidermal growth factor receptor: a phase II trial. Int J Rad Oncol Biol Phys 22: 225-230, 1992

    Google Scholar 

  88. Archer GE, Sampson JH, Lorimer IA, McLendon RE, Kuan CT, Friedman AH, Friedman HS, Pastan IH, Bigner DD: Regional treatment of epidermal growth factor receptor vIII-expressing neoplastic meningitis with a single-chain immunotoxin, MR-1. Clin Cancer Res 5: 2646-2652, 1999

    Google Scholar 

  89. Pu P, Liu X, Liu A, Cui J, Zhang Y: Inhibitory effect of antisense epidermal growth factorRNAon the proliferation of rat C6 glioma cells in vitro and in vivo. J Neurosurg 92: 132-139, 2000

    Google Scholar 

  90. Basu A: The potential of protein kinase C as a target for anticancer treatment. Pharmac Ther 59: 257-280, 1993

    Google Scholar 

  91. O'Brian CA, Liskamp RM, Solomon DH, Weinstein IB: Inhibition of protein kinase C by tamoxifen. Cancer Res 45: 2462-2465, 1985

    Google Scholar 

  92. Vertosick FT, Selker RG, Pollack IF, Arena V: The treatment of intracranial malignant gliomas using orally administered tamoxifen therapy: preliminary results in a series of 'failed' patients. Neurosurgery 30: 897-903, 1992

    Google Scholar 

  93. Couldwell WT, Weiss MH, DeGiorgio CM, Weiner LP, Hinton DR, Ehresmann GR, Conti PS, Apuzzo ML: Clinical and radiographic response in a minority of patients with recurrent malignant gliomas treated with high-dose tamoxifen. Neurosurgery 32: 485-490, 1993

    Google Scholar 

  94. Khoshyomn S, Penar PL, Rossi J, Wells A, Abramson DL, Bhushan A: Inhibition of phospholipase C-gamma1 activation blocks glioma cell motility and invasion of fetal rat brain aggregates. Neurosurgery 44: 568-577, 1999

    Google Scholar 

  95. Wang X, Fu X, Brown PD, Crimmin MJ, Hoffman RM: Matrix metalloproteinase inhibitor BB-94 (batimastat) inhibits human colon tumor growth and spread in a patient-like orthotopic model in nude mice. Cancer Res 54: 4726-4728, 1994

    Google Scholar 

  96. Watson SA, Morris TM, Robinson G, Crimmin MJ, Brown PD, Hardcastle JD: Inhibition of organ invasion by the matrix metalloproteinase inhibitor batimastat (BB-94) in two human colon carcinoma metastasis models. Cancer Res 55: 3629-3633, 1995

    Google Scholar 

  97. Davies B, Brown PD, East N, Crimmin MJ, Balkwill FK: A synthetic matrix metalloproteinase inhibitor decreases tumor burden and prolongs survival of mice bearing human ovarian carcinoma xenografts. Cancer Res 54: 2087-2091, 1994

    Google Scholar 

  98. Brown PD: Matrix metalloproteinase inhibitors: a novel class of anticancer agents. Adv Enz Regul 35: 293-301, 1995

    Google Scholar 

  99. Brown PD: Synthetic matrix metalloproteinase inhibitors: from cancer models to cancer patients. Proc Am Assoc Cancer Res 37: 633-634, 1996

    Google Scholar 

  100. Tonn JC, Kerkau S, Hanke A, Bouterfa H, Mueller JG, Wagner S, Vince GH, Roosen K: Effect of synthetic matrixmetalloproteinase inhibitors on invasive capacity and proliferation of human malignant gliomas in vitro. Int J Cancer 80: 764-772, 1999

    Google Scholar 

  101. Shalinsky DR, Brekken J, Zou H, McDermott CD, Forsyth P, Edwards D, Margosiak S, Bender S, Truitt G, Wood A, Varki NM, Appelt K: Broad antitumor and antiangiogenic activities ofAG3340, a potent and selective MMP inhibitor undergoing advanced oncology clinical trials. Ann NY Acad Sci 878: 236-270, 1999

    Google Scholar 

  102. Price A, Shi Q, Morris D, Wilcox ME, Brasher PM, Rewcastle NB, Shalinsky D, Zou H, Appelt K, Johnston RN, Yong VW, Edwards D, Forsyth P: Marked inhibition of tumor growth in a malignant glioma tumor model by a novel synthetic matrix metalloproteinase inhibitor AG3340. Clin Cancer Res 5: 845-854, 1999

    Google Scholar 

  103. Wild-Bode C, Weller M, Rimner A, Dichgans J, Wick W: Sublethal irradiation promotes migration and invasiveness of glioma cells: implications for radiotherapy of human glioblastoma. Cancer Res 61: 2744-2750, 2001

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Binder, D.K., Berger, M.S. Proteases and the Biology of Glioma Invasion. J Neurooncol 56, 149–158 (2002). https://doi.org/10.1023/A:1014566604005

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014566604005

Navigation