Skip to main content
Log in

Inhibition of Tyrosine Kinases Blocks Adhesion-Induced T-Cell Coactivation Without Interfering with T-Cell Adhesion to Endothelial Cell–Surface Ligands

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Integrin and cell adhesion molecule–regulated cellular adhesion plays an integral part in the recruitment and activation of lymphocytes. T-cell activation is a dynamic process subject to integrin-dependent and -independent regulation. Stimulation of human peripheral blood T cells by the anti-CD3 monoclonal antibody results in a rapid upregulation of integrin affinity. In conjunction with adhesion to endothelial cell–derived ligands and extracellular matrix proteins, anti-CD3 antibodies have been shown to result in significant increases in IL-2 production and T-cell proliferation. Therefore, at least two signal cascades are activated by ligation of the TCR: One results in a change in affinity of integrins for their ligands, whereas the other activates a signaling cascade that leads to gene induction. We investigated the effects of several tyrosine kinase inhibitors on human peripheral blood T-cell adhesion and adhesion-induced costimulation of IL-2 expression and secretion. These compounds did not inhibit anti-CD3–induced short-term (30 min) or long-term (18 hr) T-cell adhesion to VCAM-1, MAdCAM, or ICAM-1. When T cells were stimulated with anti-CD3 and allowed to adhere to VCAM-1, MAdCAM, or ICAM-1 in the presence of these inhibitors; IL-2 production was significantly reduced. The MEK specific inhibitor, PD98059, did not block T-cell adhesion to the various substrates, but it did block IL-2 synthesis. In addition, the tyrosine kinase inhibitors and PD98059 blocked anti-CD3–mediated stimulation of IL-2 synthesis. These data suggest that the signaling mechanism for anti-CD3–mediated integrin activation is distinct from the signaling pathway that results in adhesion-induced IL-2 synthesis via specific integrins and anti-CD3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Bretscher, P. and M. Cohn. 1979. A theory of self-nonself discrimination.Science 169:1042–1046.

    Google Scholar 

  2. Meuller, D. L., M. Jenkins, and M. Schwartz. 1989. Clonal expansion versus functional clonal inactivation: A costimulatory signalling pathway determines the outcome of T cell antigen receptor occupancy. Annu. Rev. Immunol. 7:445–476.

    Google Scholar 

  3. Clevers, H., B. Alarcon, T. Wileman, and C. Terhorst. 1988. The T cell receptor ?CD3 complex: A dynamic protein ensemble. Ann.Rev. Immunol. 6:629–662.

    Google Scholar 

  4. Williams, J. M., D. Deloria, J. A. Hansen, C. A. Dinarello, R. Loertscher, H. M. Shapiro, and T. B. Strom. 1985. The events of primary T cell activation can be staged by use of sepharose-bound anti-T3 (64.1) monoclonal antibody and purified interleukin 1. J.Immunol. 135:2249–2255.

    Google Scholar 

  5. Garman, R. D., K. A. Jacobs, S. C. Clark, and D. H. Raulet. 1987.B-cell-stimulatory factor 2(b2 interferon) functions as a second signal for interleukin 2 production by mature murine T cells. Proc.Natl. Acad. Sci. USA 84:7629–7633.

    Google Scholar 

  6. Houssiau, F. A., P. G. Coulie, D. Olive, and J. Van Snick. 1988.Synergistic activation of human T cells by interleukin 1 and interleukin 6.Eur. J. Immunol. 18:653–656.

    Google Scholar 

  7. Davis, L. and P. E. Lipsky. 1986. Signals involved in T cell activation.II. Distinct roles of intact accessory cells, phorbol esters, and interleukin 1 in activation and cell cycle progression of resting T lymphocytes. J. Immunol. 136:3588–3596.

    Google Scholar 

  8. Kawakima, K., Y. Yamamoto, K. Kakimoto, and K. Onoue. 1989.Requirements for delivery of signals by physical interaction and soluble factors from accessory cells in the induction of receptor mediated T cell proliferation. Efficetiveness of IFN-gamma modulation of accessory cells for physical interaction with T cells. J.Immunol. 142: 1818–1825.

    Google Scholar 

  9. Juliano, R. L. and S. Haskill. 1993. Signal transduction from the extracellular matrix. J. Cell Biol. 20:577–585.

    Google Scholar 

  10. Nojima, Y., M. J. Humphries, A. P. Mould, A. Komoriya, K. Yamada, S. F. Schlossman, and C. Morimoto. 1990. VLA-4 mediates CD3-dependent CD4+ T cell activation via the CS1 alternatively spliced domain of fibronectin. J. Exp. Med. 172:1185–1192.

    Google Scholar 

  11. Shimizu, Y., G. A. van Seventer, K. J. Horgan, and S. Shaw. 1990. Costimulation of proliferative responses of resting CD4+ T cells by the interaction of VLA-4 and VLA-5 with fibronectin. J.Immunol. 145:59–67.

    Google Scholar 

  12. Burkly, L. C., A. I. Jakubowski, B. M. Newman, M. D. Rosa, G. Chi-Rosso, and R. Lobb. 1991. Signaling by vascular cell adhesion molecule-1 (VCAM-1) through VLA-4 promotes CD3-dependent T cell proliferation. Eur. J. Immunol. 21:2871–2875.

    Google Scholar 

  13. Davis, L. S., N. Oppenheimer-Marks, J. L. Bednarczyk, B. W. McIntyre, and P. E. Lipsky. 1990. Fibronectin promotes proliferation of nave and memory T cell by signalling through both VLA-4 and VLA-5 integrin molecules. J. Immunol. 145:785–793.

    Google Scholar 

  14. van Seventer, G. A., Y. Shimizu, K. J. Horgan, and S. Shaw. 1990.The LFA-1 ligand ICAM-1 provides an important costimulatory signal for T cell receptor-mediated activation of resting T cells. J.Immunol. 144:4579–4586.

    Google Scholar 

  15. Wacholz, M. C., S. S. Patel, and P. E. Lipsky. 1989. Leukocyte function-associated antigen 1 is an activation molecule for human T cells. J. Exp. Med. 170:431–448.

    Google Scholar 

  16. Horie, S. and H. Kita. 1994. CD11b/ CD18 (Mac-1) is required for degranulation of human eosinophils induced by human recombinant granulocyte-macrophage colony-stimulating factor and platelet-activating factor. J. Immunol. 152:5457–5467.

    Google Scholar 

  17. Bednarczyk, J. L., T. K. Teague, J. N. Wygant, L. S. Davis, P. E. Lipsky, and B. W. McIntyre. 1992. Regulation of T cell proliferation by anti-CD49d and anti-CD29 monoclonal antibodies. J.Leukoc. Biol. 52:456–462.

    Google Scholar 

  18. Groux, H., S. Huet, H. Valentin, D. Pham, and A. Bernard. 1989.Suppressor effects and cyclic AMP accumulation by the CD29 molecule of CD4+ lymphocytes. Nature 339:152–154.

    Google Scholar 

  19. Hemesath, T. J., L. S. Marton, and K. Stefansson. 1994 Inhibition of T cell activation by the extracellualr matrix protein tenscin. J.Immunol. 152:5199–5207.

    Google Scholar 

  20. McIntyre, B. W., D. G. Woodside, D. A. Caruso, D. K. Wooten, S. I. Simon, S. Neelamegham, J. K. Revelle, and P. Vanderslice. 1997. Regulation of human T lymphocyte coactivation with an a4 integrin antagonist peptide. J. Immunol. 158:4180–4186.

    Google Scholar 

  21. Schwartz, M. A. and K. Denninghoff. 1994. av integrins mediate the rise in intracellular calcium in endothelial cells on fibronectin even though they play a minor role in adhesion. J. Biol. Chem. 269:11133–11137.

    Google Scholar 

  22. Kanner, S. B., L. S. Grosmaire, J. A. Ledbetter, and N. K. Damle. 1993. b2-integrin LFA-1 signaling through phospholipase C-g1 activation. Proc. Natl. Acad. Sci. USA 90:7099–7103.

    Google Scholar 

  23. Clark, E. A. and J. S. Brugge. 1995. Integrins and signal transduction pathways: The road taken. Science 268:233–239.

    Google Scholar 

  24. Arroyo, A. G., M. R. Campanero, P. Sanchez-Mateos, J. M. Zapata, M. A. Ursa, M. A. del Pozo, and F. Sanchez-Madrid. 1994.Induction of tyrosine phosphorylation during ICAM-3 and LFA-1 mediated intercellular adhesion, and its regulation by the CD45 tyrosine phosphatase. J. Cell. Biol. 126:1277–1286.

    Google Scholar 

  25. Chen, Q., M. S. Kinch, T. H. Lin, K. Burridge, and R. L. Juliano.1994. Integrin-mediated cell adhesion activates mitogen-activated protein kinases. J. Biol. Chem. 269:26602–26605.

    Google Scholar 

  26. Weiss, A. and D. R. Littman. 1994. Signal transduction by lymphocyte antigen receptors. Cell 76:263–274.

    Google Scholar 

  27. Wange, R. L. and L. E. Samelson. 1996. Complex complexes: Signaling at the TCR. Immunity 5:197–205.

    Google Scholar 

  28. Zoller, K. E., I. A. MacNeil, and J. S. Brugge. 1997. Protein tyrosine kinases Syk and Zap-70 display distinct requirements for Src family kinases in immune response receptor signal transduction.J. Immunol. 158:1650–1659.

    Google Scholar 

  29. Iwashima, M., B. A. Irving, N. S. C. vanOers, A. C. Chan, and A. Weiss. 1994. Sequential interactions of the TCR with two distinct cytoplasmic tyrosine kinases. Science 263:1136–1139.

    Google Scholar 

  30. Watts, J. D., M. Affolter, D. L. Krebs, R. L. Wange, L. E. Samelson, and R. Aebersold. 1994. Identification by electrospray ionization mass spectrometry of the sites of tyrosine phosphorylation induced in activated Jurkat T cells on the protein tyrosine kinase Zap-70. J. Biol. Chem. 269:2920–2929.

    Google Scholar 

  31. Wange, R. L., R. Guitian, N. Isakov, J. D. Watts, R. Aebersold, and L. E. Samelson. 1995. Activating and inhibitory mutations in adjacent tyrosines in the kinase domain of ZAP-70. J. Biol. Chem. 270:18730–18733.

    Google Scholar 

  32. Chan, A. C., M. Dalton, R. Johnson, G.-H. Kong, T. Wang, R. Thomas, and T. Kurosaki. 1995. Activation of ZAP-70 kinase activity by phosphorylation of tyrosine 493 is required for lymphocyte antigen receptor function. EMBO J. 14:2499–2508.

    Google Scholar 

  33. Isakov, N., R. L. Wange, and L. E. Samelson. 1994. The role of tyrosine kinases and phosphotyrosine-containing recognition motifs in regulation of the T cell-antigen receptor-mediated signal transduction pathway. J. Leukoc. Biol. 55:265–271.

    Google Scholar 

  34. Howe, L. R. and A. Weiss. 1995. Multiple kinases mediate T-cellreceptor signaling. Trends Biochem. Sci. 20:59–64.

    Google Scholar 

  35. Brown, E. and N. Hogg. 1996. Where the outside meets the inside: Integrins as activators and targets of signal transduction cascades.Immunol. Lett. 54:189–193.

    Google Scholar 

  36. Shaw, A. S. and M. L. Dustin. 1997. Making the TCR go the distance: Review a topological view of T cell activation. Immunity 6: 361–369.

    Google Scholar 

  37. Kassner, P. D., S. Kawaguchi, and M. E. Hemler. 1994. Minimum a chain cytoplasmic tail sequence needed to support integrinmediated adhesion. J. Biol. Chem. 269:19859–19867.

    Google Scholar 

  38. Stewart, M., C. Cabanas, and N. Hogg. 1996. T cell adhesion to intercellular adhesion molecule-1 (ICAM-1) is controlled by cell spreading and the activation of integrin LFA-1. J. Immunol. 156:1810–1817.

    Google Scholar 

  39. Stewart, M. P., A. McDowall, and N. Hogg. 1998. LFA-1-mediated adhesion is regulated by cytoskeletal restraint and by a Ca2+-dependent protease, calpain. J. Cell Biol. 140:699–707.

    Google Scholar 

  40. Hughes, P. E., T. E. O'Toole, J. Ylanne, S. J. Shattil, and M. H. Ginsberg. 1995. The conserved membrane proximal region of an integrin cytoplasmic domain sprecifies ligand binding affinity. J.Biol. Chem. 270:12411–12417.

    Google Scholar 

  41. Peter, K. and T. E. O'Toole. 1995. Modulation of cell adhesion by changes in ?L?2 (LFA-1, CD11a /CD18) cytoplasmic domain /cytoskeletal interaction. J. Exp. Med. 181:315–326.

    Google Scholar 

  42. Lu, C.-F. and T. A. Springer. 1997. The a subunit cytoplasmic domain regulates the assembly and adhesiveness of integrin Lymphocyte-Function-Associated Antigen-1. J. Immunol. 159:268–278.

    Google Scholar 

  43. Elemer, G. S. and T. S. Edgington. 1994. Microfilament reorganization is associated with functional activation of amb2 on monocytic cells. J. Biol. Chem. 269:3159–3166.

    Google Scholar 

  44. Kucik, D. F., M. L. Dustin, J. M. Miller, and E. J. Brown. 1996. Adhesion-activating phorbolester increases the mobility of leukocyte integrin LFA-1 in cultured lymphocytes. J. Clin. Invest. 97:2139–2144.

    Google Scholar 

  45. Lub, M., Y. van Kooyk, S. J. van Vliet, and C. G. Figdor. 1997. Dual role of the actin cytoskeleton in regulating cell adhesion mediated by the integrin Lymphocyte Function-associated Molecule-1. Mol. Biol. Cell. 8:341–351.

    Google Scholar 

  46. Landergren, U. 1984. Measurement of cell numbers by means of the endogenous enzyme hexosaminidase. Applications to detection of lymphokines and cell surface antigens. J. Immunol. Methods 67:379–388.

    Google Scholar 

  47. Akiyama, T., J. Ishida, S. Nakagawa, H. Ogawara, S. Watanabe, N. Itoh, M. Shibuya, and Y. Fukami. 1987. Genistein, a specific inhibitor of tyrosine-specific protein kinases. J. Biol. Chem. 262:5592–5595.

    Google Scholar 

  48. Petruzzelli, L., L. Maduzia, and T. A. Springer. 1998. Differential requirements for LFA-1 binding to ICAM-1 and LFA-1-mediated cell aggregation. J. Immunol. 160:4208–4216.

    Google Scholar 

  49. Uehara, Y., M. Hori, T. Takeuchi, and H. Umezawa. 1986. Phenotypic change from transformed to normal induced by benzoquinonoid ansamycins accmpanies inactivation of p60src in rat kidney cells infected with Rous sarcoma virus. Mol. Cell. Biol. 6:2198–2206.

    Google Scholar 

  50. Levitzki, A. 1990. Tyrphostins-potential antiproliferative agents and novel molecular tools. Biochem. Pharmacol. 40:913–918.

    Google Scholar 

  51. Crews, C. M. and R. L. Erikson. 1993. Extracellular signals and reversible protein phosphorylation: What to Mek of it all. Cell. 74:215–217.

    Google Scholar 

  52. Siegel, J. N., R. D. Klausner, U. R. Rapp, and L. E. Samelson. 1990. T cell antigen receptor engagement stimulates c-raf phosphorylation and induces c-raf-associated kinase activity via a protein kinase dependent pathway. J. Biol. Chem. 265:18472–18480.

    Google Scholar 

  53. Dudley, D. T., P. Pang, S. J. Decker, A. J. Bridges, and A. R. Saltiel. 1995. A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc. Natl. Acad. Sci. USA 92:7686–7689.

    Google Scholar 

  54. Pang, P., T. Sawada, S. J. Decker, and A. R. Saltiel. 1995.Inhibition of MAP kinase kinase blocks the differentiation of PC-12 cells induced by nerve growth factor. J. Biol. Chem. 270:13585–13588.

    Google Scholar 

  55. Harding, C. V. and E. R. Unanue. 1990. Quantitation of antigen presenting cell MHC class II ?peptide complexes necessary for T cell stimulation. Nature 346:574–576.

    Google Scholar 

  56. Demotz, S., H. M. Grey, and A. Sette. 1990. The minimal number of class II MHC-antigen complexes needed for T cell activation.Science 249:1028–1030.

    Google Scholar 

  57. Sykulev, Y., M. Joo, I. Vturina, T. J. Tsomides, and H. N. Eisen. 1996. Evidence that a single MHC-peptide complex on a target cell can elicit a cytolytic T cell response. Immunity 4:565–571.

    Google Scholar 

  58. Brower, R. C., R. England, T. Takeshita, S. Kozlowski, D. H. Margulies, J. A. Berzofsky, and C. Delisi. 1994. Minimal requirenments for peptide mediated activation of CD-8 CTL. Mol.Immunol. 31:1285–1293.

    Google Scholar 

  59. Valitutti, S., S. Muller, M. Cella, E. Padovan, and A. Lanzavecchia. 1995. Serial triggering of many T-cell receptors by a few peptide-MHC complexes. Nature 375:148–151.

    Google Scholar 

  60. Wulfing, C., M. D. Sjaastad, and M. M. Davis. 1998. Visualizing the dynamics of T cell activation: ICAM-1 migrates rapidly to the T cell ?B cell interface and acts to sustain calcium levels. Proc.Natl. Acad. Sci. USA 95:6302–6307.

    Google Scholar 

  61. Reich, Z., J. J. Boniface, D. S. Lyons, N. Borochov, E. J. Wachtel, and M. M. Davis. 1997. Ligand-specific oligomerization of TCR molecules. Nature 387:617–620.

    Google Scholar 

  62. Bachmann, M. F., K. McKall-Faienza, R. Schmits, D. Bouchard, J. Beach, D. E. Speiser, T. W. Mak, and P. S. Ohashi. 1997. Distinct roles for LFA-1 and CD28 during activation of na¨?ve T cells: Adhesion versus costimulation. Immunity 7:549–557.

    Google Scholar 

  63. Zuckerman, L. A., L. Pullen, and J. Miller. 1998. Functional consequences of costimulation by ICAM-1 on IL-2 gene expression and cell activation. J. Immunol. 160:3259–3268.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nowlin, D.M., Cardarelli, P.M., Young, L. et al. Inhibition of Tyrosine Kinases Blocks Adhesion-Induced T-Cell Coactivation Without Interfering with T-Cell Adhesion to Endothelial Cell–Surface Ligands. Inflammation 26, 31–43 (2002). https://doi.org/10.1023/A:1014421829234

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014421829234

Navigation