Skip to main content
Log in

Structural and functional model of methane hydroxylase of membrane-bound methane monooxygenase from Methylococcus capsulatus (Bath)

  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Computer analysis of a wide range of primary sequences showed that α-, β-, and γ-peptides of membrane-bound methane hydroxylase contained 2, 7, and 6 transmembrane helices respectively. Conservative amino acid residues participating in complex formation were revealed. The α- and γ-peptides are suggested to contain mononuclear copper ions with the ligand environment mainly consisting of His residues. The Cu sites are located in the hydrophilic region and are responsible for ESR signals. The active site of β-peptide in which the activation of O2 and oxidation of CH4 occur is localized in the hydrophobic region close to the membrane surface. This site is formed by the amino acid residues of four transmembrane helices and one loop between them and is suggested to be a binuclear Cu—Fe or Fe—Fe center. The Cu site of α-peptide transfers electrons to the active site of β-peptide, and the Cu site of γ-peptide is either involved in this process or only stabilizes the protein structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Dalton, in Methane and Methanol Utilizers, Plenum, New York, 1982, p. 85.

    Google Scholar 

  2. H. Dalton, S. D. Prior, and S. H. Stanley, in Microbial Growth on C 1 Compounds, Eds. R. L. Crowford and R. S. Hanson, American Society for Microbiology, Washington, 1984, p. 75.

    Google Scholar 

  3. J. Bradley and J. D. Lipscomb, Chem. Rev., 1996, 96, 2625.

    Google Scholar 

  4. R. I. Gvozdev, E. V. Shushenacheva, A. I. Pylyashenko-Novohatny, and V. S. Belova, Oxidation Communs., 1984, No. 3–4, 249.

  5. K. J. Burrous, A. Cornish, D. Scott, and I. J. Higgins, J. Gen. Microbiol., 1984, 130, 3327.

    Google Scholar 

  6. J. Green and J. Dalton, J. Biol. Chem. 1989, 264, 17698.

    Google Scholar 

  7. I. A. Tukhvatullin, L. A. Korshunova, A. Z. Averbakh, and R. I. Gvozdev, Tez. dokl. konf. “Vysokoorganizovannye kataliticheskie sistemy na osnove kompleksov medi: printsipy formirovaniya i mekhanizma deistviya” [Proc. of the Conf. “Highly Organized Catalytic Systems Based on Copper Complexes: Principles of Formation and Mechanism of Action”] (Moscow, June 19, 1996), Moscow, 1996, 4 (in Russian).

  8. J. A. Zahn and A. A. Dispirito, J. Bacteriol., 1996, 178, 1018.

    Google Scholar 

  9. H.-HT. Nguen, J. J. Elliott, JH.-K. Yip, and S. I. Chan, J. Biol. Chem., 1998, 273, 7957.

    Google Scholar 

  10. M. Takeguchi, K. Miyakawa, and I. Okura, J. Mol. Catal, 1998, 132, 145.

    Google Scholar 

  11. H.-HT. Nguen, K. T. Nakagava, B. Hedman, S. J. Elliott, M. E. Lidstrom, K. O. Hodgson, and S. I. Chan, J. Am. Chem. Soc., 1996, 118, 12766.

    Google Scholar 

  12. M. Takegushi, K. Migakawa, and I. Okura, J. Mol. Cat., 1999, 137, 161.

    Google Scholar 

  13. S. I. Chan, H.-HT. Nguen, A. K. Shiemke, and M. E. Lindstrom, in Microbial Growth on C 1 Compounds, Eds. J. C. Murrel and D. P. Kelly, Intercept, Andover, Hampshire, U.K., 1993, p. 93.

    Google Scholar 

  14. H-HT. Nguen, A. K. Shiemke, S. R. Jakobs, B. I. Hales, M. E. Lidstrom, and S. I. Chan, J. Biol. Chem., 1994, 269, 14995.

    Google Scholar 

  15. J. D. Semrau, D. Zoland, M. E. Lidstrom, and S. I. Chan, J. Inorg. Biochem., 1995, 58, 235.

    Google Scholar 

  16. I. A. Tukhvatullin, A. V. Kulikov, L. A. Korshunova, R. I. Gvozdev, and H. Dalton, Dokl. Akad. Nauk, 1997, 352, 549 [Dokl. Biophys., 352–354, 8 (Engl. Transl.)].

    Google Scholar 

  17. M. Takegushi, T. Yamada, T. Kamachi, and I. Okura, BioMetals, 1999, 12, 27.

    Google Scholar 

  18. H. Yuan, M. L. P. Collins, and W. E. Antholine, J. Am. Chem. Soc., 1997, 119, 5073.

    Google Scholar 

  19. H. Yuan, M. L. P. Collins, and W. E. Antholine, Biophys. J., 1999, 76, 2223.

    Google Scholar 

  20. S. S. Lemos, M. L. Perille Collins, S. S. Eaton, G. R. Eaton, and W. E. Antholine, Biophys. J., 2000, 79, 1085.

    Google Scholar 

  21. D. Sh. Burbacv, I. A. Moroz, R. I. Gvozdev, and L. A. Korshunova, Dokl. Akad. Nauk, 1994, 339, 541 [Dokl. Biophys., 1994, 337–339, 1 (Engl. Transl.)].

    Google Scholar 

  22. S. J. Elliott, D. W. Randall, R. D. Britt, and S. I. Chan, J. Am. Chem. Soc., 1998, 120, 3247.

    Google Scholar 

  23. R. M. Bagirov, R. A. Stukan, N. P. Akent'eva, R. I. Gvozdev, A. G. Knizhnyi, and E. V. Shushenacheva, Mol. Biol., 1989, 23, 1243 [Mol. Biol., 1989, 23 (Engl. Transl.)].

    Google Scholar 

  24. A. A. DiSpirito, J. A. Zahn, D. W. Graham, H. J. Kim, C. K. Larive, T. S. Derrick, C. D. Cox, and A. Taylor, J. Bacteriol., 1998, 180, 3606.

    Google Scholar 

  25. S. D. Prior and H. Dalton, FEMS Microbiol. Lett., 1985, 29, 105.

    Google Scholar 

  26. T. Vannelly, D. Bergman., D. M. Arciero, and A. B. Hooper, in Microbial Growth on C 1 Compounds., Kluwer Academic Publishers, Boston, Dordrecht, 1996, p. 80.

    Google Scholar 

  27. B. Rost, P. Fariselli, and R. Casadio, Prot. Science, 1996, 7, 1704.

    Google Scholar 

  28. B. Rost, R. Casadio, P. Fariselli, and C. Sander, Prot. Science, 1995, 4, 521.

    Google Scholar 

  29. B. Rost, C. Sander, and S. Schneider, Cabios, 1994, 10, 53.

    Google Scholar 

  30. J. D. Thompson, D. G. Higgins, and T. J. Gibson, Nucleic Acids Res., 1994, 22, 4673.

    Google Scholar 

  31. M. V. Vol'konshtein, Biofizika, Nauka, 1988, 26 (in Russian).

  32. I. A. Tukhvatullin, R. I. Gvozdev, and K. K. Andersson, Dokl. Akad. Nauk, 2000, 374, 115 [Dokl. Biochem., 2000, 374, 175 (Engl. Transl.)].

    Google Scholar 

  33. S. A. Cook and A. K. Shimke, J. Inorgan. Biochem., 1996, 63, 273.

    Google Scholar 

  34. I. A. Tukhvatullin, L. A. Korshunova, R. I. Gvozdev, and H. Dalton, Biokhimiya, 1996, 61, 1241 [Biochem., 1996, 61, 886 (Engl. Transl.)].

    Google Scholar 

  35. N. S. Ovanesyan, V. I. Sobolev, V. I. Dubkov, G. I. Panov, and A. A. Shteinman, Izv. Akad. Nauk, Ser. Khim., 1996, 1583 [Russ. Chem. Bull., 1996, 45, 1509 (Engl. Transl.)].

    Google Scholar 

  36. J. C. Nesheim, and J. D. Lipscomb, J. Inorg. Biochem., 1995, 59, 369.

    Google Scholar 

  37. L. A. Korshunova, R. I. Gvozdev, and H. Dalton, Dokl. Akad. Nauk, 1997, 352, 545 [Dokl. Biophys., 1997, 352–354, 4 (Engl. Transl.)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tukhvatullin, I.A., Gvozdev, R.I. & Andersson, K.K. Structural and functional model of methane hydroxylase of membrane-bound methane monooxygenase from Methylococcus capsulatus (Bath). Russian Chemical Bulletin 50, 1867–1876 (2001). https://doi.org/10.1023/A:1014342431711

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014342431711

Navigation