Skip to main content
Log in

Crystal structure and modeling of the tetrahedral intermediate state of methylmalonate-semialdehyde dehydrogenase (MMSDH) from Oceanimonas doudoroffii

  • Microbial Physiology and Biochemistry
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

The gene product of dddC (Uniprot code G5CZI2), from the Gram-negative marine bacterium Oceanimonas doudoroffii, is a methylmalonate-semialdehyde dehydrogenase (OdoMMSDH) enzyme. MMSDH is a member of the aldehyde dehydrogenase superfamily, and it catalyzes the NADdependent decarboxylation of methylmalonate semialdehyde to propionyl-CoA. We determined the crystal structure of OdoMMSDH at 2.9 Å resolution. Among the twelve molecules in the asymmetric unit, six subunits complexed with NAD, which was carried along the protein purification steps. OdoMMSDH exists as a stable homodimer in solution; each subunit consists of three distinct domains: an NAD-binding domain, a catalytic domain, and an oligomerization domain. Computational modeling studies of the OdoMMSDH structure revealed key residues important for substrate recognition and tetrahedral intermediate stabilization. Two basic residues (Arg103 and Arg279) and six hydrophobic residues (Phe150, Met153, Val154, Trp157, Met281, and Phe449) were found to be important for tetrahedral intermediate binding. Modeling data also suggested that the backbone amide of Cys280 and the side chain amine of Asn149 function as the oxyanion hole during the enzymatic reaction. Our results provide useful insights into the substrate recognition site residues and catalytic mechanism of OdoMMSDH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, P.D., Grosse-Kunstleve, R.W., Hung, L.W., Ioerger, T.R., McCoy, A.J., Moriarty, N.W., Read, R.J., Sacchettini, J.C., Sauter, N.K., and Terwilliger, T.C. 2002. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr. 58, 1948–1954.

    Article  PubMed  Google Scholar 

  • Bannerjee, D., Sanders, L.E., and Sokatch, J.R. 1970. Properties of purified methylmalonate semialdehyde dehydrogenase of Pseudomonas aeruginosa. J. Biol. Chem. 245, 1828–1835.

    CAS  PubMed  Google Scholar 

  • Battye, T.G.G., Kontogiannis, L., Johnson, O., Powell, H.R., and Leslie, A.G. 2011. iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr. D Biol. Crystallogr. 67, 271–281.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bchini, R., Dubourg-Gerecke, H., Rahuel-Clermont, S., Aubry, A., Branlant, G., Didierjean, C., and Talfournier, F. 2012. Adenine binding mode is a key factor in triggering the early release of NADH in coenzyme A-dependent methylmalonate semialdehyde dehydrogenase. J. Biol. Chem. 287, 31095–31103.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen, V.B., Arendall, W.B., Headd, J.J., Keedy, D.A., Immormino, R.M., Kapral, G.J., Murray, L.W., Richardson, J.S., and Richardson, D.C. 2009. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21.

    Article  PubMed Central  PubMed  Google Scholar 

  • Curson, A.R., Fowler, E.K., Dickens, S., Johnston, A.W., and Todd, J.D. 2012. Multiple DMSP lyases in the γ-proteobacterium Oceanimonas doudoroffii. Biogeochemistry 110, 109–119.

    Article  CAS  Google Scholar 

  • Curson, A.R., Sullivan, M.J., Todd, J.D., and Johnston, A.W. 2011a. DddY, a periplasmic dimethylsulfoniopropionate lyase found in taxonomically diverse species of Proteobacteria. ISME J. 5, 1191–1200.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Curson, A.R., Todd, J.D., Sullivan, M.J., and Johnston, A.W. 2011b. Catabolism of dimethylsulphoniopropionate: microorganisms, enzymes and genes. Nat. Rev. Microbiol. 9, 849–859.

    Article  CAS  PubMed  Google Scholar 

  • Emsley, P. and Cowtan, K. 2004. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132.

    Article  PubMed  Google Scholar 

  • Hempel, J., Nicholas, H., and Lindahl, R. 1993. Aldehyde dehydrogenases: widespread structural and functional diversity within a shared framework. Protein Sci. 2, 1890–1900.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Johansson, K., Ramaswamy, S., Eklund, H., El-Ahmad, M., Hjelmqvist, L., and Jörnvall, H. 1998. Structure of betaine aldehyde dehydrogenase at 2.1 Å resolution. Protein Sci. 7, 2106–2117.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Laskowski, R.A., MacArthur, M.W., Moss, D.S., and Thornton, J.M. 1993. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291.

    Article  CAS  Google Scholar 

  • Liu, Z.J., Sun, Y.J., Rose, J., Chung, Y.J., Hsiao, C.D., Chang, W.R., Kuo, I., Perozich, J., Lindahl, R., and Hempel, J. 1997. The first structure of an aldehyde dehydrogenase reveals novel interactions between NAD and the Rossmann fold. Nat. Struc. Mol. Biol. 4, 317–326.

    Article  CAS  Google Scholar 

  • Murshudov, G.N., Skubák, P., Lebedev, A.A., Pannu, N.S., Steiner, R.A., Nicholls, R.A., Winn, M.D., Long, F., and Vagin, A.A. 2011. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol. Crystallogr. 67, 355–367.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ni, L., Zhou, J., Hurley, T.D., and Weiner, H. 1999. Human liver mitochondrial aldehyde dehydrogenase: three-dimensional structure and the restoration of solubility and activity of chimeric forms. Protein Sci. 8, 2784–2790.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nwachukwu, J.C., Southern, M.R., Kiefer, J.R., Afonine, P.V., Adams, P.D., Terwilliger, T.C., and Nettles, K.W. 2013. Improved crystallographic structures using extensive combinatorial refinement. Structure 21, 1923–1930.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reisch, C.R., Moran, M.A., and Whitman, W.B. 2011. Bacterial catabolism of dimethylsulfoniopropionate (DMSP). Front. Microbiol. 2, 172.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Steele, M., Lorenz, D., Hatter, K., Park, A., and Sokatch, J. 1992. Characterization of the mmsAB operon of Pseudomonas aeruginosa PAO encoding methylmalonate-semialdehyde dehydrogenase and 3-hydroxyisobutyrate dehydrogenase. J. Biol. Chem. 267, 13585–13592.

    CAS  PubMed  Google Scholar 

  • Stefels, J. 2000. Physiological aspects of the production and conversion of DMSP in marine algae and higher plants. J. Sea Res. 43, 183–197.

    Article  CAS  Google Scholar 

  • Steinmetz, C.G., Xie, P., Weiner, H., and Hurley, T.D. 1997. Structure of mitochondrial aldehyde dehydrogenase: the genetic component of ethanol aversion. Structure 5, 701–711.

    Article  CAS  PubMed  Google Scholar 

  • Stines-Chaumeil, C., Talfournier, F., and Branlant, G. 2006. Mechanistic characterization of the MSDH (methylmalonate semialdehyde dehydrogenase) from Bacillus subtilis. Biochem. J. 395, 107–115.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sunda, W., Kieber, D., Kiene, R., and Huntsman, S. 2002. An antioxidant function for DMSP and DMS in marine algae. Nature 418, 317–320.

    Article  CAS  PubMed  Google Scholar 

  • Talfournier, F., Stines-Chaumeil, C., and Branlant, G. 2011. Methylmalonate-semialdehyde dehydrogenase from Bacillus subtilis substrate specificity and coenzyme A binding. J. Biol. Chem. 286, 21971–21981.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Todd, J.D., Curson, A.R., Kirkwood, M., Sullivan, M.J., Green, R.T., and Johnston, A.W. 2011. DddQ, a novel, cupin‐containing, dimethylsulfoniopropionate lyase in marine roseobacters and in uncultured marine bacteria. Environ. Microbiol. 13, 427–438.

    Article  CAS  PubMed  Google Scholar 

  • Todd, J.D., Curson, A.R., Nikolaidou-Katsaraidou, N., Brearley, C.A., Watmough, N.J., Chan, Y., Page, P.C., Sun, L., and Johnston, A.W. 2010. Molecular dissection of bacterial acrylate catabolism–unexpected links with dimethylsulfoniopropionate catabolism and dimethyl sulfide production. Environ. Microbiol. 12, 327–343.

    Article  CAS  PubMed  Google Scholar 

  • Todd, J.D., Kirkwood, M., Newton-Payne, S., and Johnston, A.W. 2012. DddW, a third DMSP lyase in a model Roseobacter marine bacterium, Ruegeria pomeroyi DSS-3. ISME J. 6, 223–226.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vagin, A. and Teplyakov, A. 1997. MOLREP: an automated program for molecular replacement. J. Appl. Crystallog. 30, 1022–1025.

    Article  CAS  Google Scholar 

  • Vasiliou, V. and Nebert, D.W. 2005. Analysis and update of the human aldehyde dehydrogenase (ALDH) gene family. Hum. Genomics 2, 138.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Winn, M.D., Ballard, C.C., Cowtan, K.D., Dodson, E.J., Emsley, P., Evans, P.R., Keegan, R.M., Krissinel, E.B., Leslie, A.G., and McCoy, A. 2011. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang, Y.X., Tang, L., and Hutchinson, C.R. 1996. Cloning and characterization of a gene (msdA) encoding methylmalonic acid semialdehyde dehydrogenase from Streptomyces coelicolor. J. Bacteriol. 178, 490–495.

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hyun Park, HaJeung Park or Jun Hyuck Lee.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Do, H., Lee, C.W., Lee, S.G. et al. Crystal structure and modeling of the tetrahedral intermediate state of methylmalonate-semialdehyde dehydrogenase (MMSDH) from Oceanimonas doudoroffii . J Microbiol. 54, 114–121 (2016). https://doi.org/10.1007/s12275-016-5549-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-016-5549-2

Keywords

Navigation