Skip to main content
Log in

A quick solution structure determination of the fully oxidized double mutant K9-10A cytochrome c7 from Desulfuromonas acetoxidans and mechanistic implications

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Lysines 9 and 10 in Desulfuromonas acetoxidans cytochrome c7, which could be involved in the interaction mechanism with the redox partners, have been replaced by alanine residues using site-directed mutagenesis. The solution structure of the fully oxidized form of K9-10A cytochrome c7, which is paramagnetic with three paramagnetic centers, has been determined via 1H NMR. The assignment of the spectra has been performed through an automatic program whose algorithm and strategy are here described. The assignment of the NOESY spectra has been further extended by back calculating the NOESY maps. The final number of meaningful NOE-based upper distance limits was 1186. In the Restrained Energy Minimization calculations, 147 pseudocontact shift constraints were also included, which showed consistency with NOE-based constraints and therefore further contribute to validate the structure quality. A final family of 35 conformers was calculated with RMSD values with respect to the mean structure of 0.69 ± 0.17 Å and 1.05 ± 0.14 Å for the backbone and heavy atoms, respectively. The overall fold of the molecule is maintained with respect to the native protein. The loop present between heme III and heme IV results to be highly disordered also in the present structure although its overall shape mainly resembles that of the oxidized native protein, and the two strands which give rise to the short β-sheet present at the N-terminus and connected by a turn containing the mutated residues, are less clearly defined. If this loop is neglected, the RMSD values are 0.52 ± 0.07 Å and 0.92 ± 0.06 Å for the backbone and heavy atoms, respectively, which represent a reasonable resolution. The relative distances and orientations of the three hemes are maintained, as well as the orientation of the imidazole rings of the axial histidine ligands, with the only exception of heme IV. Such difference probably reflects minor conformational changes due to the substitution of the vicinal Lys10 with an Ala. The replacement of the two lysines does not affect the reduction potentials of the three hemes, consistently with the expectations on the basis of the structure and electrostatic calculations. However, the replacement of the two lysines affects the reactivity of the mutant cytochrome c7 with [Fe] hydrogenase, inducing a change in K m. This finding is in agreement with the identification of the protein area around heme IV as the interacting site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ambler, R.P. (1991) Biochim. Biophys. Acta, 1058, 42–47.

    PubMed  Google Scholar 

  • Ansaldi, M., Lepelletier, M. and Mejean, V. (1996) Anal. Biochem., 234, 110–111.

    PubMed  Google Scholar 

  • Assfalg, M., Banci, L., Bertini, I., Bruschi, M., Giudici-Orticoni, M.T. and Turano, P. (1999) Eur. J. Biochem., 266, 634–643.

    PubMed  Google Scholar 

  • Assfalg, M., Banci, L., Bertini, I., Bruschi, M. and Turano, P. (1998) Eur. J. Biochem., 256, 261–270.

    PubMed  Google Scholar 

  • Aubert, C., Giudici-Orticoni, M.T., Czjzek, M., Haser, R., Bruschi, M. and Dolla, A. (1998) Biochemistry, 37, 2120–2130.

    PubMed  Google Scholar 

  • Aubert, C., Lojou, E., Bianco, P., Rousset, M., Durano, M.C., Bruschi, M. and Dolla, A. (1998) Appl. Environ. Microbiol., 64, 1308–1312.

    PubMed  Google Scholar 

  • Banci, L., Bertini, I., Bren, K.L., Cremonini, M.A., Gray, H.B., Luchinat, C. and Turano, P. (1996) J. Biol. Inorg. Chem., 1, 117–126.

    Google Scholar 

  • Banci, L., Bertini, I., Bren, K.L., Gray, H.B., Sompornpisut, P. and Turano, P. (1995) Biochemistry, 34, 11385–11398.

    PubMed  Google Scholar 

  • Banci, L., Bertini, I., Bren, K.L., Gray, H.B., Sompornpisut, P. and Turano, P. (1997) Biochemistry, 36, 8992–9001.

    PubMed  Google Scholar 

  • Banci, L., Bertini, I., Bruschi, M., Sompornpisut, P. and Turano, P. (1996) Proc. Natl. Acad. Sci. USA, 93, 14396–14400.

    PubMed  Google Scholar 

  • Banci, L., Bertini, I., Cremonini, M.A., Gori Savellini, G., Luchinat, C., Wüthrich, K. and Güntert, P. (1998) J. Biomol. NMR, 12, 553–557.

    Google Scholar 

  • Banci, L., Bertini, I., Gori Savellini, G., Romagnoli, A., Turano, P., Cremonini, M.A., Luchinat, C. and Gray, H.B. (1997) Proteins Struct. Funct. Genet., 29, 68–76.

    PubMed  Google Scholar 

  • Bartels, C., Xia, T.H., Billeter, M., Güntert, P. and Wüthrich, K. (1995) J. Biomol. NMR, 5, 1–10.

    Google Scholar 

  • Bertini, I. and Luchinat, C. (1986) NMR of Paramagnetic Molecules in Biological Systems, Benjamin/Cummings, Menlo Park, CA.

    Google Scholar 

  • Bertini, I. and Luchinat, C. (1996) NMR of Paramagnetic Substances, 1st edn., Coord. Chem. Rev. 150, Elsevier, Amsterdam.

    Google Scholar 

  • Borgias, B., Thomas, P.D. and James, T.L. (1989) COmplete Relaxation Matrix Analysis (CORMA), University of California, San Francisco.

    Google Scholar 

  • Brugna, M., Nitschke, W., Toi, H., Bruschi, M. and Giudici-Orticoni, M.T. (1999) J. Bacteriol., 181, 5505–5508.

    PubMed  Google Scholar 

  • Cambillau, C., Frey, M., Mosse, J., Guerlesquin, F. and Bruschi, M. (1988) Proteins Struct. Funct. Genet., 4, 70

    Google Scholar 

  • Case, D.A., Pearlman, D.A., Caldwell, J.W., Cheatham, T.E., Ross, W.S., Simmerling, C.L., Darden, T.A., Merz, K.M., Stanton, R.V., Cheng, A.L., Vincent, J.J., Crowley, M., Tsui, V., Radmer, R.J., Duan, Y., Pitera, J., Massova, I., Seibel, G.L., Singh, U.C., Weiner, P.K. and Kollman, P.A. (1999) AMBER 6, University of California, San Francisco.

    Google Scholar 

  • Coutinho, I., Turner, D.L., Liu, M.-Y., LeGall, J. and Xavier, A.V. (1996) J. Biol. Inorg. Chem., 1, 305–311.

    Google Scholar 

  • Czjzek, M., Arnoux, P., Haser, R. and Shepard, W. (2001) Acta Cryst., D57, 670–678.

    Google Scholar 

  • Dolla, A., Leroy, G., Guerlesquin, F. and Bruschi, M. (1991) Biochim. Biophys. Acta, 1058, 171–177.

    PubMed  Google Scholar 

  • Gilson, M.K., Rashin, A., Fine, R. and Honig, B. (1985) J. Mol. Biol., 183, 503–516.

    PubMed  Google Scholar 

  • Gunner, M.R. and Honig, B. (1991) Proc. Natl. Acad. Sci. USA, 88, 9151–9155.

    PubMed  Google Scholar 

  • Güntert, P., Braun, W. and Wüthrich, K. (1991) J. Mol. Biol., 217, 517–530.

    PubMed  Google Scholar 

  • Güntert, P., Mumenthaler, C. and Wüthrich, K. (1997) J. Mol. Biol., 273, 283–298.

    PubMed  Google Scholar 

  • Haladjian, J., Bianco, P., Nunzi, F. and Bruschi, M. (1994) Anal. Chem., 289, 15–20.

    Google Scholar 

  • Klapper, I., Hagstrom, R., Fine, R., Sharp, K. and Honig, B. (1986) Proteins Struct. Funct. Genet., 1, 47–59.

    PubMed  Google Scholar 

  • Koradi, R., Billeter, M. and Wüthrich, K. (1996) J. Mol. Graphics, 14, 51–55.

    Google Scholar 

  • Laskowski, R.A., MacArthur, M.W., Moss, D.S. and Thornton, J.M. (1993) J. Appl. Crystallogr., 26, 283–291.

    Google Scholar 

  • Laskowski, R.A., Rullmann, J.A.C., MacArthur, M.W., Kaptein, R. and Thornton, J.M. (1996) J. Biomol. NMR, 8, 477–486.

    PubMed  Google Scholar 

  • Macura, S., Wüthrich, K. and Ernst, R.R. (1982) J. Magn. Reson., 47, 351–357.

    Google Scholar 

  • Marion, D. and Wüthrich, K. (1983) Biochem. Biophys. Res. Commun., 113, 967–974.

    PubMed  Google Scholar 

  • Matias, P.M., Morais, J., Coelho, R., Carrondo, M.A., Wilson, K., Dauter, Z. and Sieker, L. (1996) Protein Sci., 5, 1342–1354.

    PubMed  Google Scholar 

  • Morais, J., Palma, P.N., Frazao, C., Caldeira, J., LeGall, J., Moura, I., Moura, J.J.G. and Carrondo, M.A. (1995) Biochemistry, 34, 12830–12841.

    PubMed  Google Scholar 

  • Moura, J.J.G., Moore, G.R., Williams, R.J.P., Probst, I., LeGall, J. and Xavier, A.V. (1984) Eur. J. Biochem., 144, 433–440.

    PubMed  Google Scholar 

  • Pearlman, D.A. and Case, D.A. (1991) SANDER, University of California, San Francisco.

    Google Scholar 

  • Piotto, M., Saudek, V. and Sklenar, V. (1992) J. Biomol. NMR, 2, 661–666.

    PubMed  Google Scholar 

  • Postgate, J.R. (1984) The Sulphate Reducing Bacteria, 2nd edn, Cambridge University Press, Cambridge.

    Google Scholar 

  • Probst, I., Bruschi, M., Pfennig, N. and LeGall, J. (1977) Biochim. Biophys. Acta, 460, 58–64.

    PubMed  Google Scholar 

  • Rousset, M., Casalot, L., Rapp-Giles, B.J., Dermoun, Z., de Philip, P., Belaich, J.P. and Wall, J.D. (1998) Plasmid, 39, 114–122.

    PubMed  Google Scholar 

  • Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Turner, D.L., Costa, H.S., Coutinho, I., LeGall, J. and Xavier, A.V. (1997) Eur. J. Biochem., 243, 474–481.

    PubMed  Google Scholar 

  • Weimar, P.J., van Kavelaar, M.J., Michel, C.B. and Ng, K.T. (1988) Appl. Environ. Microbiol., 54, 386–396.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivano Bertini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Assfalg, M., Bertini, I., Turano, P. et al. A quick solution structure determination of the fully oxidized double mutant K9-10A cytochrome c7 from Desulfuromonas acetoxidans and mechanistic implications. J Biomol NMR 22, 107–122 (2002). https://doi.org/10.1023/A:1014202405862

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014202405862

Navigation