Skip to main content
Log in

A Proliferation Control Network Model: The Simulation of Two-Dimensional Epithelial Homeostasis

  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

Despite the recent progress in the description of the molecular mechanisms of proliferation and differentiation controls in vitro, the regulation of the homeostasis of normal stratified epithelia remains unclear in vivo. Computer simulation represents a powerful tool to investigate the complex field of cell proliferation regulation networks. It provides huge computation capabilities to test, in a dynamic in silico context, hypotheses about the many pathways and feedback loops involved in cell growth and proliferation controls.

Our approach combines a model of cell proliferation and a spatial representation of cells in 2D using the Voronoi graph. The cell proliferation model includes intracellular (cyclins, Cyclin Dependent Kinases - CDKs, Retinoblastoma protein - Rb, CDK inhibitors) and extracellular controls (growth and differentiation factors, integrins). The Voronoi graph associates a polygon with every cell and the set of these polygons defines the tissue architecture. Thus, the model provides a quantitative model of extracellular signals and cell motility as a function of the neighborhood during time dependent simulations.

The 2D simulations illustrate the influence of the microenvironment on cell proliferation in basal layers of stratified epithelia and of differential adherence in keratinocytes differentiation and related upward migration. Our results particularly show the role of CDK inhibitors (mainly the protein p27) in the Rb dependent control pathway of the transition from the G1 to S phase of the cell cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Aguda, B. D. (1999). Instabilities in phosphorylation-dephosphorylation cascades and cell cycle checkpoints. Oncogene 18: 2846-2851.

    Google Scholar 

  • Aguda, B. D. and Y. Tang (1999). The kinetic origins of the restriction point in the mammalian cell cycle. Cell Proliferation 32: 321-335.

    Google Scholar 

  • Barrandon, Y. and H. Green (1987). Three clonal types of keratinocyte with different capacities for multiplication. Proceedings of the National Academy of Sciences of the United States of America 84: 2302-2306.

    Google Scholar 

  • Bhalla, U. S. and R. Iyengar (1999). Emergent properties of networks of biological signaling pathways. Science 283: 381-386.

    Google Scholar 

  • Bodenstein, L. (1986). A dynamic model of tissue growth and cell patterning. Cell Differentiation 19: 19-33.

    Google Scholar 

  • Cannon, W. B. (1932). The Wisdom of the Body. Norton, New York.

    Google Scholar 

  • Chandebois, R. (1977). Cell sociology and the problem of position effect: pattern formation, origin and role of gradients. Acta Biotheoretica 26: 203-238.

    Google Scholar 

  • Clem, C. J., D. Konig and J-P. Rigaut (1997). A three-dimensional dynamic simulation model of epithelial tissue renewal. Analytical and Quantitative Cytology and Histology 19: 174-184.

    Google Scholar 

  • Düchting, W. and T. Vogelsaenger (1984). Modeling and simulation of growing spheroids. Recent Results in Cancer Research 95: 168-179.

    Google Scholar 

  • Feinberg, M. and F. J. M. Horn (1974). Dynamics of open chemical systems and the algebraic structure of the underlying reaction network. Chemical Engineering in Sciences 29: 775.

    Google Scholar 

  • Ferrell, J. E. Jr. (1996). Tripping the switch fantastic: how a protein kinase cascade can convert graded inputs into switch-like outputs. Trends in Biochemical Sciences 21: 460-466.

    Google Scholar 

  • Gaffney, E. A., P. K. Maini, J. A. Sherratt and S. Tuft (1999). The mathematical modelling of cell kinetics in corneal epithelial wound healing. Journal of Theoretical Biology 197: 15-40.

    Google Scholar 

  • Goldbeter, A. (1991). A minimal cascade model for the mitotic oscillator involving cyclin and cdc2 kinase. Proceedings of the National Academy of Sciences of the United States of America 88: 9107-9111.

    Google Scholar 

  • Green, M. R., D. Phil and J. R. Couchman (1985). Differences in human skin between the epidermal growth factor receptor distribution detected by EGF binding and monoclonal antibody recognition. The Journal of Investigative Dermatology 85: 239-245.

    Google Scholar 

  • Hatzimanikatis, V., K. H. Lee and J. E. Bailey (1999). A mathematical description of regulation of the Gl-S transition of the mammalian cell cycle. Biotechnology and Bioengineering 65.6: 631-637.

    Google Scholar 

  • Honda, H. (1978). Description of cellular patterns by Dirichlet domains: the two-dimensional case. Journal of Theoretical Biology 72: 523-543.

    Google Scholar 

  • Honda, H. and H. Yamanaka (1984). A computer simulation of geometrical configurations during cell division. Journal of Theoretical Biology 106: 423-435.

    Google Scholar 

  • Honda, H., T. Morita and A. Tanabe (1979). Establishment of epidermal cell columns in mammalian skin: computer simulation. Journal of Theoretical Biology 81: 745-759.

    Google Scholar 

  • Honda, H., M. Tanemura and S. Imayama (1996). Spontaneous architectural organization of mammalian epidermis from random cell packing. Journal of Investigative Dermatology 106: 312-315.

    Google Scholar 

  • Inohara, S. (1992). Studies and perspectives of signal transduction in the skin. Experimental Dermatology 1: 207-220.

    Google Scholar 

  • Inohara, S., Y. Kitano, and K. Kitagawa (1995). Cell cycle regulators in the keratinocyte (cyclin-cdk).. Experimental Dermatology 4: 1-8..

    Google Scholar 

  • Jensen, U. B., S. Lowell and F. M. Watt (1999). The spatial relationship between stem cells and their progeny in the basal layer of human epidermis: a new view based on whole mount labelling and lineage analysis. Development 126: 2409-2418.

    Google Scholar 

  • Jones, P. H. (1997). Epithelial stem cells. BioEssays 19(8): 683-690.

    Google Scholar 

  • Jones, J., M. Sugiyama, F. M. Watt and P. M. Speight (1993). Integrin expression in normal, hyperplastic, dysplastic and malignant oral epithelium. The Journal of Pathology 169: 235-243.

    Google Scholar 

  • Kholodenko, B. N. and H. V. Westerhoff (1999). The macroworld versus the microworld of biochemical regulation and control. Trends in Biochemical Sciences 20: 52-54.

    Google Scholar 

  • Kholodenko, B. N., O. V. Demin, G. Moehrenand and J. B. Hoek (1999). Quantification of short term signaling by the epidermal growth factor receptor. The Journal of Biological Chemistry 274: 30169-30181.

    Google Scholar 

  • Kohn, K. W. (1998). Functional capabilities of molecular network components controlling the mammalian GI/S cell cycle phas transition. Oncogene 16: 1065-1075.

    Google Scholar 

  • Kohn, K. W. (1999). Molecular interaction map of the mammalian cell cycle control and DNA repair systems. Molecular Biology of the Cell 10: 2703-2734.

    Google Scholar 

  • Kyoda, K. M., M. Muraki and H. Kitano (2000). Construction of a generalized simulator for multi-cellular organisms and its application to SMAD signal transduction. In: Proceedings Pacific Symposium on BioComputing.

  • Lavker, R. M. and T-T. Sun (1983). Epidermal stem cells. Journal of Investigative Dermatology 81 Supplement: 121s-127s.

  • Lavker, R. M. and T-T. Sun (2000). Epidermal stem cells: properties, markers and location. Proceedings of the National Academy of Sciences of the United States of America 97: 13473-13475.

    Google Scholar 

  • Lehrer, M. S., T-T. Sun and M. Lavker (1998). Startegies of epithelial repair: modulation of stem cell and transit amplifying cell proliferation. Journal of Cell Science II 1: 2867-2875.

    Google Scholar 

  • Lowell, S., P. Jones, I. Le Roux, J. Dunne, and F. Watt (2000). Stimulation of human epidermal differentiation by Delta-Notch signalling at the boundaries of stem-cell clusters. Current Biology 10: 491-500.

    Google Scholar 

  • Marcelpoil, R. and Y. Usson (1992). Methods for the study of cellular sociology: Voronoï diagrams and parametrization of the spatial relationships. Journal of Theoretical Biology 154: 359-369.

    Google Scholar 

  • Mendes, P. (1997). Biochemistry by numbers: simulation of biochemical pathways with Gepasi 3. Trends in Biochemical Sciences 22: 361-363.

    Google Scholar 

  • Nguyen, B. P., M. C. Ryan, S. G. Gil and W. G. Carter (2000). Deposition of laminin 5 in epidermal wounds regulates integrin signaling and adhesion. Current Opinion in Cell Biology 12: 554-562.

    Google Scholar 

  • Novak, B. and J. J. Tyson (1993). Modeling the cell division cycle: M-phase trigger, oscillations, and size control. Journal of Cell Science 106: 1153-1168.

    Google Scholar 

  • Obeyesekere, M. N., E. S. Knudsen, J. Y. J. Wang and S. O. Zimmerman (1997). A mathematical model of the GI phase of Rb+/+ and Rb-/-mouse embryonic fibroblasts and an osteosarcoma cell line. Cell Proliferation 30: 171-194.

    Google Scholar 

  • Oster, G., J. D. Murray and A. K. Harris (1983). Mechanical aspects of mesenchymal morphogenesis. Journal of Embryology and Experimental Morphology 78: 83-125.

    Google Scholar 

  • Pardee, A. B. (1974). A restriction point for control of normal animal cell proliferation. Proceedings of the National Academy of Sciences of the United States of America 71 (4): 1286-90.

    Google Scholar 

  • Pawson, T. (1995). Protein modules and signalling networks. Nature 373: 573-580.

    Google Scholar 

  • Pawson, T. and T. M. Saxton (1999). Signaling networks-Do all roads lead to the same genes. Cell 97: 675-678.

    Google Scholar 

  • Potten, C. S. and R. J. Morris (1988). Epithelial stem cells in vivo. Journal of Cell Science (Supplement) 10: 45-62.

    Google Scholar 

  • Rashbass, J., D. Stekel and E. Dillwyn Williams (1996). The use of a computer model to simulate epithelial pathologies. The Journal of Pathology 179: 333-339.

    Google Scholar 

  • Schaff, J. and L. M. Loew (1999). The virtual cell. In: Proceedings of the Pacific Symposium in Biocomputing: 228-39

  • Shackney, S. E. and T. V. Shankey (1999). Cell cycle models for molecular biology and molecular oncology: exploring new dimensions. Cytometry 35: 97-116.

    Google Scholar 

  • Sherr, C. J. and J. M. Roberts (1999). CDK inhibitors: positive and negative regulators of G1-phase progression. Genes and Development 13: 15011512.

    Google Scholar 

  • Stein, G. S., R. Baserga, A. Giordano, and D. T. Denhardt (1999). The molecular basis of cell cycle and growth control. Wiley-Liss, New York.

    Google Scholar 

  • Stekel, D., J. Rashbass and E. D. Williams (1995). A computer graphic simulation of squamous epithelium. Journal of Theoretical Biology 173: 283-293.

    Google Scholar 

  • Taylor, G., M. S. Lehrer, P. J. Jensen, T-T. Sun and R. Lavker (2000). Involvment of follicular stem cells in forming not only the follicle but also the epidermis. Cell 102: 451-461.

    Google Scholar 

  • Thompson, D'A. W. (1942). On Growth and Form. Cambridge University Press, Cambridge.

    Google Scholar 

  • Tomita, M., K. Hashimoto, K. Takahashi, T. S. Shimizu, Y. Matsuzaki, F. Miyoshi, K. Saito, S. Tanida, K. Yugi, J. C. Venter and C. A. III. Hutchison (1999). E-CELL: software environment for whole cell simulation. Bioinformatics 15: 72-84.

    Google Scholar 

  • Watt, F. M. (1998). Epidermal stem cells: markers, patterning and the control of stem cell fate. Philosophical transactions of the Royal Society of London. Series B: Biological sciences 353: 831-837.

    Google Scholar 

  • Watt, F. M. and B. L. M. Hogan (2000). Out of Eden: stem cells and their niches. Science 287: 1427-1430.

    Google Scholar 

  • Wright, N. and M. Alison (1984). The biology of epithelial cell populations. Vol. 1 and 2. Clarendon Press, Oxford.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morel, D., Marcelpoil, R. & Brugal, G. A Proliferation Control Network Model: The Simulation of Two-Dimensional Epithelial Homeostasis. Acta Biotheor 49, 219–234 (2001). https://doi.org/10.1023/A:1014201805222

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014201805222

Navigation