Skip to main content
Log in

UV-Visible and IR Spectroelectrochemical Studies of FeVO4 Sol-Gel Films for Electrochromic Applications

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The sol-gel synthesis route, in combination with dip-coating deposition, was used for the preparation of FeVO4 films. TEM measurements of Fe/V (1 : 1)-oxide films heated at 400°C reveal that the films consist of a triclinic FeVO4-I and an orthorhombic FeVO4-II phases with a grain size of up to 50 nm. The electrochromic properties of the films were tested in 1 M LiClO4/propylene carbonate (PC) using various electrochemical techniques and in-situ UV-visible spectroelectrochemical measurements. The best compromise between the charge capacity per film thickness (Qd−1 = −0.14 mC cm−2 nm−1), electrochemical stability (>1000 cycles) and optical modulation (ΔTvis = 0.15) was achieved in the potential range of 4.80 to 1.80 V vs. Li, which suggests that FeVO4 films can be used as counter-electrodes in electrochromic devices.

Extensive IR-spectroscopy studies of FeVO4 films in charged/discharged states revealed the following spectra changes: (i) small charging (−0.01 mC cm−2 nm−1) leads to a variation in the intensity of all the vibrational bands without shifting their frequencies, (ii) higher chargings bring about the intensity and frequency changes of bridging V—O···Fe and V···O···Fe stretchings showing that vanadium, and probably also iron, are involved in the insertion/extraction processes, (iii) below 500 cm−1 broad absorption appears due to the Li+—O modes, which also remained in the IR spectra of discharged (bleached) states revealing the irreversible lithiation, and (iv) charging to −0.30 and −0.50 mC cm−2 nm−1 leads to the amorphisation of the film structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Robertson and E. Kostiner, J. Solid State Chem. 4, 29 (1972).

    Google Scholar 

  2. Y. Oka, T.Yao, N.Yamamoto, Y. Ueda, S. Kawasaki, M. Azuma, and M. Takano, J. Solid State Chem. 123, 54 (1996).

    Google Scholar 

  3. J. Muller and J.C. Jaubert, J. Solid State Chem. 14, 8 (1975).

    Google Scholar 

  4. F. Laves, Acta Crystallogr. 17, 1476 (1964).

    Google Scholar 

  5. M. Misono, Catal. Rev. Sci. Eng. 29, 269 (1987).

    Google Scholar 

  6. L.M. Levison and B.M. Wanklyn, J. Solid State Chem. 3, 131 (1971).

    Google Scholar 

  7. S. Denis, E. Baudrin, M. Touboul, and J.M. Tarascon, J. Electrochem. Soc. 44, 4099 (1997).

    Google Scholar 

  8. Y. Sakurai and J. Yamaki, J. Electrochem. Soc. 132, 512 (1985).

    Google Scholar 

  9. M. Sugawara, M. Fujiwara, and K. Matsuki, Denki Kagaku 61, 224 (1993).

    Google Scholar 

  10. M. Touboul and A. Popot, Rev. Chim. Miner. 22, 610 (1985).

    Google Scholar 

  11. M. Touboul and A. Popot, J. Thermal. Anal. 31, 117 (1986).

    Google Scholar 

  12. E. Baudrin, S. Denis, F. Orsini, L. Seguin, M. Touboul, and J. M. Tarascon, J. Mater. Chem. 9, 101 (1999).

    Google Scholar 

  13. S. Ben?i?, B. Orel, A. Šurca, and U. Lavren?i? Štangar, Sol. Energy 68, 499 (2000).

    Google Scholar 

  14. C.G. Cranqvist, Handbook of Inorganic Electrochromic Materials, (Elsevier Amsterdam, 1995), p. 431.

    Google Scholar 

  15. F.W. Billmeyer and M. Saltyman, Principles of Colour Technology, (John Wiley &;; Sons, New York, 1981), p. 47.

    Google Scholar 

  16. A. Talledo and C.G. Granqvist, J. Appl. Phys. 77, 4655 (1995).

    Google Scholar 

  17. A. Šurca, B. Orel, G. Draži?, and B. Pihlar, J. Electrochem. Soc. 146, 232 (1999).

    Google Scholar 

  18. A. Šurca and B. Orel, Electrochem. Acta 44, 3051 (1999).

    Google Scholar 

  19. A. Šurca, B. Orel, U. Opara Kras?vec, U. Lavren?i? Štangar, and G. Draži?, J. Electrochem. Soc. 147, 2358 (2000).

    Google Scholar 

  20. U. Opara Krašovec, B. Orel, and R. Reisfeld, Electrochem. Solid State Lett. 1, 104 (1998).

    Google Scholar 

  21. U. Opara Krašovec, B. Orel, A. Šurca, N. Bukovec, and R. Reisfeld, Solid State Ionics 118, 195 (1999).

    Google Scholar 

  22. G. Picardi, F. Varsano, F. Decker, U. Opara Krašovec, A. Šurca, and B. Orel, Electrochim. Acta 18, 3157 (1999).

    Google Scholar 

  23. E.J. Baran and I.L. Botto, Monatshefte für Chemie 108, 311 (1977).

    Google Scholar 

  24. M.J. Isasi, R. Sáez-Puche, M.L. Veiga, L. Pico, and A. Jerez, Mat. Res. Bull. 23, 599 (1988).

    Google Scholar 

  25. E.J. Baran and M.E. Escobar, Spectrochim. Acta 41A, 415 (1985).

    Google Scholar 

  26. S. Hayakawa, T. Yoko, and S. Sakka, J. Non-Cryst. Solids 183, 73 (1995).

    Google Scholar 

  27. A. Müller, E.J. Baran, and P.J. Hendra, Spectrochim. Acta 41A, 415 (1985).

    Google Scholar 

  28. P. Tarte, Spectrochim. Acta 20, 238 (1964).

    Google Scholar 

  29. Y. Hase and I.V.P. Yoshida, Spectrochim. Acta A35, 377 (1979).

    Google Scholar 

  30. G. Fabbri and P. Baraldi, Anal. Chem. 44, 1325 (1972).

    Google Scholar 

  31. J. Issidorson and C.G. Granqvist, Sol. Energy Mat. Sol. Cells. 44, 375 (1996).

    Google Scholar 

  32. Angela Šurca, Sandra Ben?i?, Boris Orel, and Franco Decker, Sol-Gel Science and Technology, submitted.

  33. R. Jasinski and A. Iob, J. Electrochem. Soc. 135, 551 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vuk, A.Š., Orel, B., Dražič, G. et al. UV-Visible and IR Spectroelectrochemical Studies of FeVO4 Sol-Gel Films for Electrochromic Applications. Journal of Sol-Gel Science and Technology 23, 165–181 (2002). https://doi.org/10.1023/A:1013755618889

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013755618889

Navigation