Russian Journal of Ecology

, Volume 33, Issue 1, pp 45–55 | Cite as

Change in the Life Cycle Strategy of Fish under the Effect of Chronic Water Pollution

  • T. I. Moiseenko

Abstract

Fish of a polymorphic and evolutionarily young species Coregonus lavaretusfrom a subarctic lake that has been polluted for more than 60 years are used as an example for analyzing principal trends in the dynamics of structural and functional organization of fish populations. It is shown that fish exposed to sublethal doses of toxic substances for a long time have a smaller body size, the period of their sexual maturation becomes more variable, and the frequency of spawning and life span decrease. The biochemical and bioenergetic mechanisms of variation in populations are analyzed. The ecological expediency of change in the life cycle strategy corresponding to r-selection (conversion to a short reproductive cycle) is substantiated.

life cycle strategy toxic pollution whitefish Coregonus lavaretus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Arshanitsa, N.M., Materials of Ichthyotoxicological Studies in the Lake Ladoga Basin, in Vliyanie zagryaznenii na ekosistemu Ladozhskogo ozera (Effects of Pollutants on the Ecosystems of Lake Ladoga), Leningrad: Gos. Nauchno-Issled. Inst. Ozern. Rechn. Rybn. Khoz., 1988, pp. 12-23.Google Scholar
  2. Begon, M., Harper, J.L., and Townsend, C.R., Ecology: Individuals, Populations, and Communities, Oxford: Blackwell, 1986. Translated under the title Ekologiya. Osobi, populyatsii i soobshchestva, Moscow: Mir, 1989.Google Scholar
  3. Belyaeva, G.V., Main Commercial Fish Species of Lake Imandra and Their Distribution, in Rybokhozyaistvennoe izuchenie vnutrennikh vodoemov (Studies on Inland Water Bodies for the Purposes of Fishing Industry), Leningrad: Gos. Nauchno-Issled. Inst. Ozern. Rechn. Rybn. Khoz., 1975, pp. 42-49.Google Scholar
  4. Belyaeva, G.V., Fish Resources and Prospects for Fishery Development in Lake Imandra, Izv. Gos. Nauchno-Issled. Inst. Ozern. Rechn. Rybn. Khoz., 1976, no. 94, pp. 85-90.Google Scholar
  5. Bolotova, N.L., Transformations of the Ecosystems of Shallow Northern Lakes under Anthropogenic Conditions: An Example of Water Bodies in Vologda Oblast, Doctoral (Biol.) Dissertatio, St. Petersburg, 1999.Google Scholar
  6. Brett, J.R., Environmental Factors and Growth, in Bioenergetics and Growth, vol. 8 of Fish Physiology, Haar, W.C., Randall, D.J., and Brett, J.R., Eds., New York, 1979. Translated under the title Bioenergetika i rost ryb, Moscow, 1983, pp. 275-345.Google Scholar
  7. Dudorov, P., Bioenergetics-related and Other Considerations Important for Studying the Influence of Water Quality on Fish Growth, Vliyanie zagryaznyayushchikh veshchestv na gidrobiontov i ekosistemy vodoemov. Materialy sovetsko-amerikanskogo simpoziuma (Effects of Pollutants on Hydrobionts and Ecosystems of Water Bodies. Proceedings of Soviet-American Symposium), Leningrad: Nauka, 1979, pp. 57-71.Google Scholar
  8. Flerov, B.A., Ekologofiziologicheskie aspekty toksikologii presnovodnykh zhivotnykh (The Ecophysiological Aspects of Toxicology of Freshwater Animals), Leningrad: Nauka, 1989.Google Scholar
  9. Galkin, G.G., Kolyushev, A.I., and Pokrovskii, V.V., The Ichthyofauna of Reservoirs and Lakes of Murmansk oblast, in Ryby Murmanskoi oblasti (Fishes of Murmansk Oblast), Murmansk, 1966, pp. 177-193.Google Scholar
  10. Gamperl, A.K., Vijayan, M.M., and Boutilier, R.G., Experimental Control of Stress Hormone Level in Fishes: Techniques and Application, Rev. Fish Biol., 1994, vol. 4, pp. 215-255.Google Scholar
  11. Heath, D.D., Bernier, N.J., Heath, J.W., and Iwama, G.K., Genetic, Environmental, and Interaction Effects on Growth and Stress Response of Chinook Salmon (Oncorhynchus. tshawytscha) Fry, Can. J. Fish. Aquat. Sci., 1993, vol. 50, pp. 478-500.Google Scholar
  12. Houlihan, D.F., Costello, M.J., Secombes, C.J., Stagg, R., and Brechin, J., Effect of Sewage Sludge Exposure on Growth, Feeding, and Protein Synthesis of Dab [Limanda limanda (L.)], Mar. Environ. Res., 1994, vol. 37, pp. 331-345.Google Scholar
  13. Houlihan, D.F., Carter, G.G., and McCarthy, I.D., Protein Synthesis in Fish, in Biochemistry and Molecular Biology of Fishes, Amsterdam: Elsevier, 1995, pp. 191-220.Google Scholar
  14. Kashulin, N.A., Lukin, A.A., and Amundsen, R.A., Ryby presnykh vod Subarktiki kak bioindikatory tekhnogennogo zagryazneniya (Freshwater Fishes of the Subarctic Region as Bioindicators of Technogenic Pollution), Apatity: Kol'sk. Nauchn. Tsentr Ross. Akad. Nauk, 1999.Google Scholar
  15. Khublaryan, M.G. and Moiseenko, T.I., The Quality of Arctic Waters Becomes Worse, Vestn. Ross. Akad. Nauk, 2000, no. 4, pp. 307-313.Google Scholar
  16. Kirilov, A.F., Strategiya ekologicheskoi adaptatsii siga v ekstremal'nykh usloviyakh (The Strategy of Ecological Adaptation in Whitefish under Extreme Conditions), Novosibirsk: Nauka, 1983.Google Scholar
  17. Kolchinskii, E.I., Evolyutsiya biosfery (Evolution of the Biosphere), Leningrad: Nauka, 1990.Google Scholar
  18. Koshelev, B.V., Ekologiya razmnozheniya ryb (Ecology of Fish Reproduction), Moscow: Nauka, 1984.Google Scholar
  19. Krogius, F.V., Materials on the Age and Growth Rate of Whitefish in Lake Imandra, Raboty Murmanskoi biologichesko stantsii (Works of the Murmansk Biological Station), Murmansk, 1926, pp. 77-87.Google Scholar
  20. Krogius, F.V., Preliminary Report on the Work of the Expedition to Lake Umbozero and Lake Imandra in Summer 1930, Tr. Leningr. Nauchno-Issled. Ikhtiol. Inst., 1931, pp. 13-25.Google Scholar
  21. Luk'yanenko, V.I., Ikhtiotoksikologiya (Ichthyotoxicology), Moscow: Agroprom, 1983.Google Scholar
  22. McArthur, R.H. and Wilson, E.O., The Theory of Island Biogeography, Princeton: Princeton Univ. Press, 1967.Google Scholar
  23. Moiseenko, T.I., The Ichthyofauna of Lake Imandra, in Ekosistema ozera Imandra pod vliyaniem tekhnogennogo zagryazneniya (The Ecosystem of Lake Imandra under the Effect of Technogenic Pollution), Apatity: Kol'sk. Fil. Akad. Nauk SSSR, 1980, pp. 48-58.Google Scholar
  24. Moiseenko, T.I., Changes in Some Biological Parameters of Fish in Ecological Monitoring, in Sostoyanie prirodnoi sredy i prognoz ee izmeneniya (The State of the Natural Environment and Forecast of Its Change), Apatity: Kol'sk. Fil. Akad. Nauk SSSR, 1982, pp. 48-58.Google Scholar
  25. Moiseenko, T.I., Ecotoxicological Principles for Establishing Safety Standards for Anthropogenic Loads on Subarctic Water Bodies (An Example of the Northern Kola Peninsula), Doctoral (Biol.) Dissertation, St. Petersburg, 1992.Google Scholar
  26. Moiseenko, T.I., Teoreticheskie osnovy normirovaniya antropogennykh nagruzok na vodoemy Subarktiki (Theoretical Principles for Establishing Safety Standards for Anthropogenic Loads on Subarctic Water Bodies), Apatity: Kol'sk. Nauchn. Tsentr Ross. Akad. Nauk, 1997.Google Scholar
  27. Moiseenko, T.I., The Fate of Metals in Arctic Surface Water: Method for Defining Critical Levels, Sci. Tot. Environ., 1999, vol. 236, pp. 19-30.Google Scholar
  28. Moiseenko, T.I., Morphophysiological Rearrangements in Fish Organism in Response to Pollution (in the Light of S.S. Shvarts's Theory), Ekologiya, 2000, vol. 31, no. 6, pp. 463-472.Google Scholar
  29. Moiseenko, T.I. and Lukin, A.A., Fish Pathologies in Polluted Water Bodies of the Subarctic Region and Their Diagnosis, Vopr. Ikhtiol., 1999, no. 4, pp. 535-547.Google Scholar
  30. Moiseenko, T.I. and Yakovlev, V.A., Antropogennye preobrazovaniya vodnykh ekosistem Kol'skogo Severa (Anthropogenic Transformations of Aquatic Ecosystems in the Northern Kola Peninsula), Leningrad: Nauka, 1990.Google Scholar
  31. Nikol'skii, G.V., Teoriya dinamiki stada ryb (The Theory of Fish Stock Dynamics), Moscow: Pishchevaya Promyshlennost', 1974.Google Scholar
  32. Odum, E.P., Basic Ecology, Philadelphia: Saunders, 1983. Translated under the title Ekologiya, Moscow: Mir, 1986.Google Scholar
  33. Pianka, E.R., On r-and K-Selection, Am. Nat., 1970, vol. 104, pp. 592-597.Google Scholar
  34. Pickering, A.D., Rainbow Trout Husbandry: Management of the Stress Response, Aquaculture, 1992, vol. 100, pp. 125-139.Google Scholar
  35. Pickering, A.D., Growth and Stress in Fish Productions, Aquaculture, 1993, vol. 111, pp. 51-63.Google Scholar
  36. Pravdin, I.F., Rukovodstvo po izucheniyu ryb (A Manual of Studies on Fishes), Moscow: Pishchevaya Promyshlennost', 1966.Google Scholar
  37. Reshetnikov, Yu.S., Specific Features of Whitefish Growth and Maturation in Northern Water Bodies, in Zakonomernost dinamiki chislennosti ryb Belogo morya i ego basseina (Trends in Fish Population Dynamic in the White Sea and Its Basin), Moscow: Nauka, 1966, pp. 93-155.Google Scholar
  38. Reshetnikov, Yu.S., Ekologiya i sistematika sigovykh ryb (The Ecology and Systematics of Coregonids), Moscow: Nauka, 1980.Google Scholar
  39. Reshetnikov, Yu.S., A Method for Expert Evaluation of the State of Individuals and Populations in Coregonids, in Biologiya i biotekhnika razvedeniya sigovykh ryb (Biology and Biotechnology of Whitefish Breeding), St. Petersburg: Gos. Nauchno-Issled. Inst. Ozern. Rechn. Rybn. Khoz., 1994, pp. 115-118.Google Scholar
  40. Reshetnikov, Yu.S., Current Problems in Studies on Whitefish, Vopr. Ikhtiol., 1995, no. 2, pp. 156-174.Google Scholar
  41. Ricker, W.E., Computation and Interpretation of Biological Statistics of Fish Populations, Ottawa, 1975. Translated under the title Metody otsenki i interpretatsii biologicheskikh pokazatelei ryb, Moscow: Mir, 1979.Google Scholar
  42. Savvaitova, K.A., Chebotarev, Yu.V., Pichugina, M.Yu., and Maksimov, S.V., Anomalies in Fish Structure as Indicators of the State of the Environment, Vopr. Ikhtiol., 1995, no. 2, pp. 182-188.Google Scholar
  43. Schmalhausen, I.I., Integration of Biological Systems and Their Self-Regulation, Byull. Mosk. O–va. Ispyt. Prir., Otd. Biol., 1961, no. 2, pp. 32-38.Google Scholar
  44. Severtsov, S.A., Dinamika naseleniya i prisposobitel'naya evolyutsiya zhivotnykh (Population Dynamics and Adaptive Evolution of Animals), Moscow: Akad. Nauk SSSR, 1941.Google Scholar
  45. Severtsov, A.S., Intraspecific Diversity as a Factor of Evolutionary Stability, Zh. Obshch. Biol., 1990, no. 5, pp. 579-589.Google Scholar
  46. Sharova, Yu.N., Specific Features of Reproductive System Functioning in Arctic Fishes under Conditions of Technogenic Pollution: An Example of Whitefish Coregonus lavaretus L., Cand. Sci. (Biol.) Dissertation, Petrozavodsk, 1999.Google Scholar
  47. Shatunovskii, M.I., Ekologicheskie zakonomernosti obmena veshchestv morskikh ryb (Ecological Regularities of Metabolism in Marine Fishes), Moscow: Nauka, 1980.Google Scholar
  48. Shatunovskii, M.I., Some Features of Lipid Metabolism in Early Fish Ontogeny, Izv. Ross. Akad. Nauk, Ser. Biol., 1993, no. 1, pp. 16-20.Google Scholar
  49. Shatunovskii, M.I., Akimova, N.V., and Ruban, G.I., Responses of the Reproductive System to Anthropogenic Effects, Vopr. Ikhtiol., 1996, vol. 36, no. 2, pp. 229-247.Google Scholar
  50. Shvarts, S.S., Ekologicheskie zakonomernosti evolyutsii (Ecological Trends in Evolution), Moscow: Nauka, 1980.Google Scholar
  51. Stroganov, N.S., The Biological Aspect of the Norm-Pathology Problem in Aquatic Toxicology, in Teoreticheskie problemy vodnoi toksikologii (Theoretical Problems of Water Toxicology), Moscow: Nauka, 1983, pp. 5-21.Google Scholar
  52. Weerd, J.H. and Komen, J., The Effects of Chronic Stress on Growth in Fish: Critical Appraisal, Comp. Biochem. Physiol., 1998, vol. 120, pp. 107-112.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2002

Authors and Affiliations

  • T. I. Moiseenko
    • 1
  1. 1.Institute of Problems of Industrial Ecology of the North, Kola Research CenterRussian Academy of SciencesApatityRussia

Personalised recommendations