Skip to main content
Log in

Calculation of Temperature Dependences of the Viscosity and Volume Relaxation Time for Oxide Glass-Forming Melts from Chemical Composition and Dilatometric Glass Transition Temperature

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The relaxation parameter K sthat is equal to the ratio of the viscosity η to the Kohlrausch volume relaxation time τ s is analyzed. It is shown that this parameter can be evaluated from the temperature T 13(corresponding to a viscosity of 1013P) and the glass transition temperature T 8 +determined from the dilatometric heating curve. The maximum error of the estimate with due regard for experimental errors is equal to ± (0.4–0.5) log K sfor “strong” glasses and ±( 0.6–0.8) log K sfor “fragile” glasses, which, in both cases, corresponds to a change in the relaxation times with a change in the temperature by ±( 8–10) K. It is revealed that the viscosity, the Kohlrausch volume relaxation time τ s , and the shear modulus Gof glass-forming materials in silicate, borate, and germanate systems satisfy the relationship log(τ s G/η) ≈ 1. The procedure for calculating the temperature dependences of the viscosity and the relaxation times in the glass transition range from the chemical composition and the T 8 +temperature for glass-forming melts in the above systems is proposed. The root-mean-square deviations between the calculated and experimental temperatures T 11and T 13are equal to ±( 6–8) K for all the studied (silicate, borate, germanate, and mixed) oxide glass-forming systems. The proposed relationships can be useful for evaluating the boundaries of the annealing range and changes in the properties and their temperature coefficients upon cooling of glass-forming melts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Priven, A.I., Calculation of the Viscosity of Glass-Forming Melts: IV. A Unified Method for Calculating the Viscosity of Silicate and Aluminate Melts, Fiz. Khim. Stekla, 1998, vol. 24, no. 1, pp. 48-62 [Glass Phys. Chem. (Engl. transl.), 1998, vol. 24, no. 1, pp. 31-40].

    Google Scholar 

  2. Priven, A.I., Calculation of the Viscosity of Glass-Forming Melts: V. Binary Borate Systems, Fiz. Khim. Stekla, 2000, vol. 26, no. 6, pp. 783-812 [Glass Phys. Chem. (Engl. transl.), 2000, vol. 26, no. 6, pp. 541-558].

    Google Scholar 

  3. Priven, A.I., Calculation of the Viscosity of Glass-Forming Melts: VI. The R2O-B2O3-SiO2 and RO-B2O3-SiO2 Ternary Borosilicate Systems, Fiz. Khim. Stekla, 2001, vol. 27, no. 4, pp. 536-552 [Glass Phys. Chem. (Engl. transl.), 2001, vol. 27, no. 4, pp. 360-370].

    Google Scholar 

  4. SciGlass (Glass Property Information System), Version 4.0, Lexington: SciVision, 2000.

  5. Mazurin, O.V., Steklovanie (Glass Transition), Leningrad: Nauka, 1986.

    Google Scholar 

  6. Startsev, Yu.K., Livshits, V.Ya., Nakhapetyan, R.A., and Novotny, V., Properties of Glasses Synthesized by Batch Melting and Ion Exchange, Proceedings of the XV International Congress on Glass, Leningrad, 1989, vol. 2b, pp. 85-91.

    Google Scholar 

  7. Startsev, Yu.K., Klyuev, V.P., and Vostrikova, M.S., Determination of Glass Transition Temperatures from Simultaneously Recorded Dependences of the Expansion and Electrical Conductivity, Fiz. Khim. Stekla, 1978, vol. 4, no. 3, pp. 278-288.

    Google Scholar 

  8. Klyuev, V.P. and Bulaeva, A.V., Viscosity and Thermal Expansion of Lead Borate Glasses in the Glass Transition Range, Fiz. Khim. Stekla, 1980, vol. 6, no. 6, pp. 674-678.

    Google Scholar 

  9. Klyuev, V.P. and Mazurin, O.V., Structural Temperature Coefficients of Specific Volume and Viscosity of Lead Borate Glass Forming Melts, J. Non-Cryst. Solids, 1980, vols. 38-39,part 1, pp. 117-122.

    Google Scholar 

  10. Klyuev, V.P. and Pevzner, B.Z., Influence of Aluminum and Gallium Oxides on the Thermal Expansion and Viscosity of Barium Borate Melts, Fiz. Khim. Stekla, 1998, vol. 24, no. 4, pp. 532-545 [Glass Phys. Chem. (Engl. transl.), 1998, vol. 24, no. 4, pp. 372-381].

    Google Scholar 

  11. Mazurin, O.V., Streltsina, M.V., and Shvaiko-Shvaikovskaya, T.P., Svoistva stekol i stekloobrazuyushchikh rasplavov. Spravochnik. Tom 1. Stekloobraznyi kremnezem i dvukhkomponentnye silikatnye sistemy, Leningrad: Nauka, 1973. Handbook of Glass Data: Part A. Silica Glass and Binary Silicate Glasses: Physical Science Data 15, Amsterdam: Elsevier, 1983.

    Google Scholar 

  12. Romanova, N.V. and Nemilov, S.V., A Study of the Viscosity of Glasses in the BaO-B2O3, BaO-B2O3-La2O3, and CdO-B2O3-La2O3 Systems in the Softening Range, Izv. Akad. Nauk SSSR, Neorg. Mater., 1970, vol. 6, no. 7, pp. 1322-1326.

    Google Scholar 

  13. Klyuev, V.P. and Chernousov, M.A., An Automated Dilatometer with a Low Measuring Load, III Vsesoyuznoe soveshchanie “Metody i pribory dlya tochnykh dilatometricheskikh issledovanii materialov v shirokom diapazone temperatur,” Tezisy dokladov (III All-Union Conference Methods and Instruments for Precision Dilatometric Investigations of Materials over a Wide Range of Temperatures, Abstracts of Papers), Leningrad: VNIIM, 1984, pp. 53-54.

    Google Scholar 

  14. Priven', A.I., Volume Relaxation in 5Na2O · 95B2O3 Glass, Fiz. Khim. Stekla, 1994, vol. 20, no. 6, pp. 735-747 [Glass Phys. Chem. (Engl. transl.), 1994, vol. 20, no. 6, pp. 507-514].

    Google Scholar 

  15. Mazurin, O.V., Relaxation Phenomena in Glass, “Glass-77,” Prague, 1977, vol. 1, pp. 129-169.

    Google Scholar 

  16. Ducroux, J.-P., Rekhson, S.M., and Merat, F.L., Structural Relaxation in Thermorheologically Complex Materials, J. Non-Cryst. Solids, 1994, vols. 172-174, pp. 541-553.

    Google Scholar 

  17. Priven, A.I., Calculation of the Viscosity of Glass-Forming Melts: I. The Li2O-Na2O-K2O-SiO2 System, Fiz. Khim. Stekla, 1997, vol. 23, no. 5, pp. 491-505 [Glass Phys. Chem. (Engl. transl.), 1997, vol. 23, no. 5, pp. 344-353].

    Google Scholar 

  18. Priven, A.I., Calculation of the Temperature Coefficient of Viscosity Logarithm log / logT for Oxide Melts in the Glass Transition Range from Their Composition, Fiz. Khim. Stekla, 2000, vol. 26, no. 5, pp. 653-677 [Glass Phys. Chem. (Engl. transl.), 2000, vol. 26, no. 5, pp. 455-469].

    Google Scholar 

  19. Shelby, J.E., Properties and Structure of B2O3-GeO2 Glasses, J. Appl. Phys., 1974, vol. 45, no. 12, pp. 5272-5277.

    Google Scholar 

  20. Nemilov, S.V., A Systematic Investigation into the Influence of Sodium Oxide Additives on the Viscosity of Vitreous Germanium Dioxide, Zh. Prikl. Khim. (Leningrad), 1972, vol. 45, no. 2, pp. 256-262.

    Google Scholar 

  21. Rekhson, S.M., Structural and Shear Stress Relaxation in the Glass Transition Range, Fiz. Khim. Stekla, 1975, vol. 1, no. 5, pp. 443-446.

    Google Scholar 

  22. Nemilov, S.V. and Komarova, N.V., The Viscosity, Elastic Properties, and Structure of Glasses in the GeO2-B2O3 and GeO2-B2O3-La2O3 Systems, Fiz. Khim. Stekla, 1976, vol. 2, no. 3, pp. 262-267.

    Google Scholar 

  23. Shaw, R.R. and Uhlmann, D.R., Effect of Phase Separation on the Properties of Simple Glasses: II. Elastic Properties, J. Non-Cryst. Solids, 1971, vol. 5, no. 3, pp. 237-263.

    Google Scholar 

  24. Matusita, K., Yokota, R., Kimijima, T., Komatsu, T., and Ihara, C., Compositional Trends in Photoelastic Constants of Borate Glasses, J. Am. Ceram. Soc., 1984, vol. 67, no. 4, pp. 261-265.

    Google Scholar 

  25. Osaka, A., Soga, N., and Kunugi, M., Elastic Constants and Vickers Hardness of Lead Borate Glasses, J. Soc. Mater. Sci. Jpn., 1974, vol. 23, no. 245, pp. 128-131.

    Google Scholar 

  26. Mazurin, O.V., Klyuev, V.P., and Stolyar, S.V., Temperature Dependences of Structural Relaxation Times at Constant Fictive Temperatures in Oxide Glasses, Glastech. Ber., 1983, vol. 56, no. 2, pp. 1148-1153.

    Google Scholar 

  27. Shelby, J.E., Thermal Expansion of Mixed-Alkali Silicate Glasses, J. Appl. Phys., 1976, vol. 47, no. 10, pp. 4489-4496.

    Google Scholar 

  28. Rekhson, S.M. and Mazurin, O.V., Stress and Structural Relaxation in Na2O-CaO-SiO2 Glass, J. Am. Ceram. Soc., 1974, vol. 57, no. 7, pp. 327-328.

    Google Scholar 

  29. Priven', A.I. and Startsev, Yu.K., Calculation of Constants for the Relaxation Model of Glass Transition, Fiz. Khim. Stekla, 1993, vol. 19, no. 2, pp. 316-328 [Glass Phys. Chem. (Engl. transl.), 1993, vol. 19, no. 2, pp. 157-163].

    Google Scholar 

  30. Mazurin, O.V., Tret'yakova, N.I., and Shvaiko-Shvaikovskaya, T.P., Metod rascheta vyazkosti silikatnykh stekol (A Method for Calculating the Viscosity of Silicate Glasses), Available from VINITI, 1969, Moscow, no. 1091-69dep.

  31. Lyon, K.C., Prediction of the Viscosities of “Soda-Lime” Silica Glasses, J. Res. Natl. Bur. Stand. (U.S.), 1974, vol. 78A, no. 4, pp. 497-503.

    Google Scholar 

  32. Mazurin, O.V. and Tret'yakova, N.I., On the Interrelation between the Viscosity and Phase Diagram of Glasses in the Na2O-BaO-SiO2 System, Neorg. Mater., 1970, vol. 6, no. 11, pp. 2022-2026.

    Google Scholar 

  33. Appen, A.A., Khimiya stekla (The Chemistry of Glasses), Leningrad: Khimiya, 1970.

    Google Scholar 

  34. Gan Fuxi, A New System of Calculating the Properties of Inorganic Oxide Glasses, Sci. Sin. (Engl. Ed.), 1974, vol. 17, no. 4, pp. 533-551.

    Google Scholar 

  35. Alekseenko, M.P. and Shchavelev, O.S., Thermal and Thermooptical Properties of Glasses, in Fizikokhimicheskie osnovy proizvodstva opticheskogo stekla (Physicochemical Principles of Manufacturing of Optical Glass), Demkina, L.I., Ed., Leningrad: Khimiya, 1976, pp. 117-134.

    Google Scholar 

  36. Takahashi, K., Thermal Expansion Coefficients and Structure of Glass, J. Soc. Glass Technol., 1953, vol. 37, no. 175, pp. 3N-7N.

    Google Scholar 

  37. Mazurin, O.V., Rekhson, S.M., and Startsev, Yu.K., On the Role of the Viscosity in Calculation of Glass Properties in Glass Transition Range, Fiz. Khim. Stekla, 1975, vol. 1, no. 5, pp. 438-442.

    Google Scholar 

  38. Moynihan, C.T., Easteal, A.J., DeBolt, M.A., and Tucker, J., Dependence of the Fictive Temperature of Glass on Cooling Rate, J. Am. Ceram. Soc., 1976, vol. 59, nos. 1-2, pp. 12-16.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Priven, A.I. Calculation of Temperature Dependences of the Viscosity and Volume Relaxation Time for Oxide Glass-Forming Melts from Chemical Composition and Dilatometric Glass Transition Temperature. Glass Physics and Chemistry 27, 527–542 (2001). https://doi.org/10.1023/A:1013298225368

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013298225368

Keywords

Navigation