Skip to main content
Log in

The results of application of Maxwell’s equations in glass science

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

Results of the application of Maxwell’s equations to describe mechanical and electrical relaxations in inorganic glasses and their melts prove the validity of the theoretical treatment of the processes within the context of continuum approximation. The relaxation properties of melts and glasses are predetermined by instantaneous modulus of elasticity (shear modulus), which adequately describes the response of the environment to local excitations related to a particle’s (atoms and ions) passage through potential barriers and the values of these barriers. The following points have been proposed: (1) generalized description of ionic conductivity of glass at a constant voltage and that of its mechanical losses, and (2) a novel equation quantitatively relating viscosity at a glass transition temperature, instantaneous shear modulus, and cooling rate of the melt. These results are proved by the experiments without introduction of any fitted constants and do not need any structural constraints imposed on the material. A new equation was obtained making it possible to calculate the sizes of atoms involved in individual viscous flow events, which is also valid without fitted constants, but only for inorganic substances with a spatial network of chemical bonds. It was shown that Maxwell’s equations and relations obtained using them are prospective for the creation of a unified theory of transport and the relaxation properties of glass and melts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Maxwell, J.C., On the dynamical theory of gases, Philos. Trans., 1867, vol. 157, pp. 49–88.

    Article  Google Scholar 

  2. Vinogradov, G.V. and Malkin, A.Ya., Reologiya polimerov (Rheology of Polymers), Moscow: Khimiya, 1977.

    Google Scholar 

  3. Nemilov, S.V., Interrelation between shear modulus and the molecular parameters of viscous flow for glass forming liquids, J. Non-Cryst. Solids, 2006, vol. 352, nos. 26–27, pp. 2715–2725.

    Article  Google Scholar 

  4. Maxwell, J.C., A Treatise on Electricity and Magnetism, Oxford: Clarendon, 1891, vol. 1, 3d ed.

    Google Scholar 

  5. Stratton, J.A., Electromagnetic Theory, New York: McGraw-Hill, 1941.

    Google Scholar 

  6. Nemilov, S.V., The review of possible interrelations between ionic conductivity, internal friction, and the viscosity of glasses and glass forming melts within the framework of Maxwell equations, J. Non-Cryst. Solids, 2011, vol. 357, no. 4, pp. 1243–1263.

    Article  Google Scholar 

  7. Nemilov, S.V., Maxwell equation for conductivity of dielectrics as the basis of direct relationship of ionic electrical conductivity and mechanical losses in glasses: New problems of physical chemistry of glass, Glass Phys. Chem., 2012, vol. 38, no. 1, pp. 27–40.

    Article  Google Scholar 

  8. Zdaniewsky, W.A., Rindone, G.E., and Day, D.E., The internal friction of glasses, J. Mater. Sci., 1979, vol. 14, pp. 763–775.

    Google Scholar 

  9. Andreev, I.V., Balashov, Yu.S., and Ivanov, N.V., High-temperature internal friction of some stabilized oxide glasses, Fiz. Khim. Stekla, 1981, vol. 7, no. 3, pp. 371–374.

    Google Scholar 

  10. Nemilov, S.V., Ageing kinetics and internal friction of oxide glasses, Glass Sci. Technol., 2005, vol. 78, no. 6, pp. 269–278.

    Google Scholar 

  11. Nemilov, S.V., Structural relaxation in oxide glasses at room temperature, Phys. Chem. Glasses: Eur. J. Glass Sci. Technol., Part B, 2007, vol. 48, no. 4, pp. 291–295.

    Google Scholar 

  12. Nemilov, S.V., Relaxation processes in inorganic melts and glasses: An elastic continuum model as a promising basis for the description of the viscosity and electrical conductivity, Glass Phys. Chem., 2010, vol. 36, no. 3, pp. 253–285.

    Article  Google Scholar 

  13. MDL®SciGlass-7.8, Shrewsbury, Massachusetts, United States: Institute of Theoretical Chemistry, 2012.

  14. Rötger, H., Elastische Nachwirkung durch Wärmediffusion (thermische Reibung) und Materiediffusion (eigentliche innere Reibung) bei periodischem und aperiodischem Vorgang, Glastech. Ber., 1941, no. 6, SS. 185–216.

    Google Scholar 

  15. Higgins, T.J., Macedo, P.B., and Volterra, V., Mechanical and ionic relaxation in Na2O · 3SiO2 glass, J. Am. Ceram. Soc., 1972, vol. 55, no. 10, pp. 488–491.

    Article  Google Scholar 

  16. Provenzano, V., Boesch, L.P., Volterra, V., Moynihan, C.T., and Macedo, P.B., Electrical relaxation in Na2O · 3SiO2 glass, J. Am. Ceram. Soc., 1972, vol. 55, no. 10, pp. 492–496.

    Article  Google Scholar 

  17. Knödler, D., Stiller, O., and Dietrich, W., Dynamic structure factor and acoustic attenuation in disordered solid electrolytes, Philos. Mag. B, 1995, vol. 71, no. 4, pp. 661–667.

    Article  Google Scholar 

  18. Roling, B., Happe, A., Ingram, M.D., and Funke, K., Interrelation between different mixed cation effects in the electrical conductivity and mechanical loss spectra of ion conducting glasses, J. Phys. Chem. B, 1999, vol. 103, no. 20, pp. 4122–4127.

    Article  Google Scholar 

  19. Vol’kenshtein, M.V. and Ptitsyn, O.B., The relaxation theory of glass transition, Dokl. Akad. Nauk SSSR, 1955, vol. 103, no. 5, pp. 795–798.

    Google Scholar 

  20. Vol’kenshtein, M.V. and Ptitsyn, O.B., The relaxation theory of glass transition: I. Solution of the basic equation and its investigation, Zh. Tekh. Fiz., 1956, vol. 26, no. 10, pp. 2204–2222.

    Google Scholar 

  21. Nemilov, S.V., Maxwell equation and classical theories of glass transition as a basis for direct calculation of viscosity at glass transition temperature, Glass Phys. Chem., 2013, vol. 39, no. 6, pp. 609–623.

    Article  Google Scholar 

  22. Leontovich, M.A., Comments to the theory of sound absorption in gases, Zh. Eksp. Teor. Fiz., 1936, vol. 6, no. 6, pp. 561–576.

    Google Scholar 

  23. Mandel’shtam, L.I. and Leontovich, M.A., On the theory of sound absorption in liquids, Zh. Eksp. Teor. Fiz., 1937, vol. 7, no. 3, pp. 438–449.

    Google Scholar 

  24. Nemilov, S.V., Interrelation between the velocity of sound propagation, mass, and energy of the chemical interaction, Dokl. Akad. Nauk SSSR, 1968, vol. 181, no. 6, pp. 1427–1429.

    Google Scholar 

  25. Nemilov, S.V., Kinetics of elementary processes in the condensed state: II. Shear relaxation and the equation of state of solids, Zh. Fiz. Khim., 1968, vol. 42, no. 6, pp. 1391–1396.

    Google Scholar 

  26. Dushman, S., Theory of unimolecular reaction velocities, J. Franklin Inst., 1920, vol. 189, no. 4, pp. 515–518.

    Article  Google Scholar 

  27. Polanyi, M. and Wigner, E., Über die Interferenz von Eigenschwingungen als Ursache von Energieschwankungen und chemischer Umsetzungen, Z. Phys. Chem., Abt. A, 1928, vol. 139A, SS. 439–452.

    Google Scholar 

  28. Hanggi, P., Talkner, P., and Borkovec, M., Reactionrate theory: Fifty years after Kramers, Rev. Mod. Phys., 1990, vol. 62, no. 2, pp. 251–341.

    Article  Google Scholar 

  29. Glasstone, S., Laidler, K.J., and Eyring, H., The Theory of Rate Processes: The Kinetics of Chemical Reactions, Viscosity, Diffusion, and Electrochemical Phenomena, New York: McGraw-Hill, 1941. Translated under the title Teoriya absolyutnykh skorostei reaktsii, Moscow: Inostrannaya Literatura, 1948.

    Google Scholar 

  30. Goodier, N.J., Slow viscous flow and elastic deformation, Philos. Mag., 1936, vol. 22, no. 22, pp. 678–681.

    Google Scholar 

  31. Einstein, A., Eine neue Bestimmung der Molekülardimensionen, Ann. Phys., 1906, vol. 19, no. 3, SS. 289–306.

    Article  Google Scholar 

  32. Myuller, R.L., The valence theory of viscosity and fluidity in the critical temperature region for high-melting glass-forming materials, Zh. Prikl. Khim. (St. Petersburg), 1955, vol. 28, no. 10, pp. 1077–1087.

    Google Scholar 

  33. Nemilov, S.V., Thermodynamic and Kinetic Aspects of the Vitreous State, Boca Raton, Florida, United States: CRC Press, 1995.

    Google Scholar 

  34. Dyre, J.C., The glass transition and elastic models of glass-forming liquids, Rev. Mod. Phys., 2006, vol. 78, pp. 953–972.

    Article  Google Scholar 

  35. Nemilov, S.V., Romanova, N.V., and Krylova, L.A., Kinetics of elementary processes in the condensed state: V. The volume of units activated in the viscous flow of silicate glasses, Zh. Fiz. Khim., 1969, vol. 43, no. 8, pp. 2131–2134.

    Google Scholar 

  36. Nemilov, S.V., Opticheskoe materialovedenie: Fizicheskaya khimiya stekla (Optical Materials Science: Physical Chemistry of Glass), St. Petersburg: St. Petersburg National Research University of Information Technologies, Mechanics, and Optics, 2009.

    Google Scholar 

  37. Littleton, J.T., Critical temperatures in silicate glasses, Ind. Eng. Chem., 1933, vol. 25, no. 7, pp. 748755.

    Article  Google Scholar 

  38. Nemilov, S.V., Kinetics of elementary processes in the condensed state: VIII. Ionic conduction in glass as the process occurring in an elastic medium, Zh. Fiz. Khim., 1973, vol. 47, no. 6, pp. 1479–1485.

    Google Scholar 

  39. Anderson, O.L. and Stewart, D.A., Calculation of activation energy of ionic conductivity in silica glasses by classical methods, J. Am. Ceram. Soc., 1954, vol. 37, no. 12, pp. 573–580.

    Article  Google Scholar 

  40. Osipov, A.A. and Osipova, L.M., Structure of glasses and melts in the Na2O-B2O3 system from high-temperature Raman spectroscopic data: I. Influence of temperature on the local structure of glasses and melts, Glass Phys. Chem., 2009, vol. 35, no. 2, pp. 153–166.

    Article  Google Scholar 

  41. Vollmayer, K., Kob, W., and Binder, K., How do the properties of a glass depend on the cooling rate? A computer simulation study of a Lennard-Jones system, J. Chem. Phys., 1996, vol. 105, no. 11, pp. 4714–4728.

    Article  Google Scholar 

  42. Mauro, J.C., Allan, D.C., and Potuzak, M., Nonequilibrium viscosity of glass, Phys. Rev. B: Condens. Matter, 2009, vol. 80, no. 9, p. 094204 (18 pages).

    Article  Google Scholar 

  43. Nemilov, S.V., Structural aspect of possible interrelation between fragility (length) of glass forming melts and Poisson’s ratio of glasses, J. Non-Cryst. Solids, 2007, vol. 353, nos. 5254, pp. 46134632.

    Google Scholar 

  44. Trinastic, J.P., Hamdan, R., Wu, Y., Zhang, L., and Hai-Ping Chenga, Unified interatomic potential and energy barrier distributions for amorphous oxides, J. Chem. Phys., 2013, vol. 139, no. 15, p. 154506.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Nemilov.

Additional information

Original Russian Text © S.V. Nemilov, 2014, published in Fizika i Khimiya Stekla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nemilov, S.V. The results of application of Maxwell’s equations in glass science. Glass Phys Chem 40, 473–485 (2014). https://doi.org/10.1134/S1087659614050113

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659614050113

Keywords

Navigation