Skip to main content
Log in

On the Modified Korteweg–De Vries Equation

  • Published:
Mathematical Physics, Analysis and Geometry Aims and scope Submit manuscript

Abstract

We consider the large time asymptotic behavior of solutions to the Cauchy problem for the modified Korteweg–de Vries equation \(u_t + a\left( t \right)\left( {u^3 } \right)_x + \frac{1}{3}u_{xxx} = 0,\left( {t,x} \right) \in R \times R\), with initial data \(u\left( {0,x} \right) = u_0 \left( x \right),x \in R\). We assume that the coefficient \(a\left( t \right) \in C^1 \left( R \right)\) is real, bounded and slowly varying function, such that \(\left| {a'\left( t \right)} \right| \leqslant C\left\langle t \right\rangle ^{ - \frac{7}{6}}\), where \(\left\langle t \right\rangle = \left( {1 + t^2 } \right)^{\frac{1}{2}}\). We suppose that the initial data are real-valued and small enough, belonging to the weighted Sobolev space \(H^{1,1} = \left\{ {\phi \in L^2 ;\left\| {\sqrt {1 + x^2 } \sqrt {1 - \partial _x^2 } \phi } \right\| < \infty } \right\}\). In comparison with the previous paper (Internat. Res. Notices 8 (1999), 395–418), here we exclude the condition that the integral of the initial data u 0 is zero. We prove the time decay estimates \(\sqrt[3]{{t^2 }}\sqrt[3]{{\left\langle t \right\rangle }}\left\| {u\left( t \right)u_x \left( t \right)} \right\|_\infty \leqslant C\varepsilon\) and \(\left\langle t \right\rangle ^{\frac{1}{3} - \frac{1}{{3\beta }}} \left\| {u\left( t \right)} \right\|_\beta \leqslant C\varepsilon\) for all \(t \in R\), where \(4 < \beta \leqslant \infty\). We also find the asymptotics for large time of the solution in the neighborhood of the self-similar solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ablowitz, M. J. and Segur, H.: Solitons and the Inverse Scattering Transform, SIAM, Philadelphia, 1981.

    Google Scholar 

  2. Bona, J. L. and Saut, J.-C.: Dispersive blow-up of solutions of generalized Korteweg-de Vries equation, J. Differential Equations 103 (1993), 3–57.

    Google Scholar 

  3. de Bouard, A., Hayashi, N. and Kato, K.: Gevrey regularizing effect for the (generalized) Korteweg-de Vries equation and nonlinear Schrödinger equations, Ann. Inst. H. Poincaré, Anal. Non Linéaire 12 (1995), 673–725.

    Google Scholar 

  4. Christ, F. M. and Weinstein, M. I.: Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation, J. Funct. Anal. 100 (1991), 87–109.

    Google Scholar 

  5. Constantin, P. and Saut, J.-C.: Local smoothing properties of dispersive equations, J. Amer. Math. Soc. 1 (1988), 413–446.

    Google Scholar 

  6. Craig, W., Kapeller, K. and Strauss, W. A.: Gain of regularity for solutions of KdV type, Ann. Inst. H. Poincaré, anal. non linéaire 9 (1992), 147–186.

    Google Scholar 

  7. Deift, P. and Zhou, X.: A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation, Ann. Math. 137 (1992), 295–368.

    Google Scholar 

  8. Dix, D. B.: Large-time Behavior of Solutions of Linear Dispersive Equations, Lecture Notes in Math. 1668, Springer, Berlin, 1997.

    Google Scholar 

  9. Dix, D.: Temporal asymptotic behavior of solutions of the Benjamin-Ono equation, J. Differential Equations 90 (1991), 238–287.

    Google Scholar 

  10. Fedoryuk, M. V.: Asymptotic methods in analysis, Encycl. of Math. Sciences 13, Springer-Verlag, New York, 1987, pp. 83–191.

    Google Scholar 

  11. Fedoryuk, M. V.: Asymptotics: Integrals and Series, Nauka, Moscow, 1987.

    Google Scholar 

  12. Ginibre, J., Tsutsumi, Y. and Velo, G.: Existence and uniqueness of solutions for the generalized Korteweg-de Vries equation, Math. Z. 203 (1990), 9–36.

    Google Scholar 

  13. Hayashi, N.: Analyticity of solutions of the Korteweg-de Vries equation, SIAM J. Math. Anal. 22 (1991), 1738–1745.

    Google Scholar 

  14. Hayashi, N. and Naumkin, P. I.: Large time asymptotics of solutions to the generalized Benjamin-Ono equation, Trans. Amer. Math. Soc. 351(1) (1999), 109–130.

    Google Scholar 

  15. Hayashi, N. and Naumkin, P. I.: Large time asymptotics of solutions to the generalized Korteweg-de Vries equation, J. Funct. Anal. 159 (1998), 110–136.

    Google Scholar 

  16. Hayashi, N. and Naumkin, P. I.: Large time behavior of solutions for the modified Korteweg-de Vries equation, Internat. Math. Res. Notices 8 (1999), 395–418.

    Google Scholar 

  17. Kato, T.: On the Cauchy problem for the (generalized) Korteweg-de Vries equation, In: V. Guillemin (ed.), Advances in Mathematics Supplementary Studies, Stud. in Appl. Math. 8, Berlin, 1983, pp. 93–128.

  18. Kenig, C. E., Ponce, G. and Vega, L.: On the (generalized) Korteweg-de Vries equation, Duke Math. J. 59 (1989), 585–610.

    Google Scholar 

  19. Kenig, C. E., Ponce, G. and Vega, L.:Well-posedness and scattering results for the generalized Korteweg-de Vries equation via contraction principle, Comm. Pure Appl. Math. 46 (1993), 527–620.

    Google Scholar 

  20. Klainerman, S.: Long time behavior of solutions to nonlinear evolution equations, Arch. Rat. Mech. Anal. 78 (1982), 73–89.

    Google Scholar 

  21. Klainerman, S. and Ponce, G.: Global small amplitude solutions to nonlinear evolution equations, Comm. Pure Appl. Math. 36 (1983), 133–141.

    Google Scholar 

  22. Kruzhkov, S. N. and Faminskii, A. V.: Generalized solutions of the Cauchy problem for the Korteweg-de Vries equation, Math. USSR, Sb. 48 (1984), 391–421.

    Google Scholar 

  23. Naumkin, P. I. and Shishmarev, I. A.: Asymptotic behavior as t → ∞ of solutions of the generalized Korteweg-de Vries equation, Math. RAS, Sb. 187(5) (1996), 695–733.

    Google Scholar 

  24. Ponce, G. and Vega, L.: Nonlinear small data scattering for the generalized Korteweg-de Vries equation, J. Funct. Anal. 90 (1990), 445–457.

    Google Scholar 

  25. Saut, J.-C.: Sur quelque généralisations de l’ equation de Korteweg-de Vries, J. Math. Pure Appl. 58 (1979), 21–61.

    Google Scholar 

  26. Sidi, A., Sulem, C. and Sulem, P. L.: On the long time behavior of a generalized KdV equation, Acta Appl. Math. 7 (1986), 35–47.

    Google Scholar 

  27. Shatah, J.: Global existence of small solutions to nonlinear evolution equations, J. Differential Equations 46 (1982), 409–425.

    Google Scholar 

  28. Staffilani, G.: On the generalized Korteweg-de Vries equation, Differential Integral Equations 10 (1997), 777–796.

    Google Scholar 

  29. Strauss, W. A.: Dispersion of low-energy waves for two conservative equations, Arch. Rat. Mech. Anal. 55 (1974), 86–92.

    Google Scholar 

  30. Strauss, W. A.: Nonlinear scattering theory at low energy, J. Funct. Anal. 41 (1981), 110–133.

    Google Scholar 

  31. Tsutsumi, M.: On global solutions of the generalized Korteweg-de Vries equation, Publ. Res. Inst. Math. Sci. 7 (1972), 329–344.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayashi, N., Naumkin, P. On the Modified Korteweg–De Vries Equation. Mathematical Physics, Analysis and Geometry 4, 197–227 (2001). https://doi.org/10.1023/A:1012953917956

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012953917956

Navigation