Skip to main content
Log in

The use of Mössbauer spectroscopy in surface studies. A methodological survey

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Mössbauer spectroscopy has been used extensively in surface studies. The different experimental approaches to derive surface information from this technique are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Topsoe, J.A. Dumesic and S. Morup, in: Applications of Mössbauer Spectroscopy, Vol. 2, ed. R.L. Cohen (Academic Press, New York1962-San Francisco1962-London, 1976) p. 55.

    Google Scholar 

  2. W.E. O’Grady, J. Electrochem. Soc. 127 (1980) 555.

    Article  Google Scholar 

  3. J. Eldridge and R.W. Hoffmann, J. Electrochem. Soc. 136 (1989) 955.

    Article  Google Scholar 

  4. J.F. Marco, J. Dávalos, M. Gracia and J.R. Gancedo, Hyp. Interact. 83 (1994) 111.

    Article  Google Scholar 

  5. E. Giesse, Gritter, M. Schurr and H. Voit, Nuovo Cimento D 18 (1996) 305.

    Google Scholar 

  6. J. Korecki and U. Gradmann, Hyp. Interact. 28 (1986) 931.

    Article  Google Scholar 

  7. J.M. Reid, in: The atomic nucleus, Penguin Library of Physical Science (1972) p. 194.

  8. J.A. Sawicki, in: Industrial Applications of the Mössbauer Effect, eds. G.J. Long and J.G. Stevens (Plenum, New York1962-London, 1986) p. 83.

    Google Scholar 

  9. R.G. Grant and D.C. Cook, in: ICAME-95, Conference Proceedings, Vol. 50, ed. I. Ortalli (SIF, Bologna, 1996), p. 929.

    Google Scholar 

  10. M.J. Tricker, in: Mössbauer Spectroscopy and Its Chemical Applications, Advances in Chemistry Series 194, eds. J.G. Stevens and G.K. Shenoy (Am. Chem. Soc., Washington, DC, 1981) p. 63.

    Google Scholar 

  11. D. Liljequist, in: Scanning Electron Microscopy III, eds. R.M. Albrecht, I.B. Shelburne and J.D. Meakin (SEM Inc. AMF O’Hare, Chicago, 1983) p. 997.

    Google Scholar 

  12. J.M. Friedt, Tech. Ing. P2 608 (1984) 1.

    Google Scholar 

  13. B.J. Tatarchuk and J.A. Dumesic, in: Chemistry and Physics of Solid Surfaces, Vol. 5 (Springer Ser. Chem. Phys., Vol. 35), eds. R. Vanselow and R. Howe (Springer-Verlag, Berlin1962-Heidelberg, 1984) p. 65.

    Google Scholar 

  14. K. Nomura, I. Ujihira and A. Vértes, J.Radioanal. Nucl. Chem. 202 (1996) 103.

    Article  Google Scholar 

  15. J.R. Gancedo, M. Gracia and J.F. Marco, Hyp. Interact. 66 (1991) 83.

    Article  Google Scholar 

  16. D.C. Cook, Hyp. Interact. 29 (1986) 1463.

    Article  Google Scholar 

  17. G. Weyer, in: Mössbauer Effect Methodology, Vol. 10, eds. I.J. Gruverman and C.W. Seidel (Plenum, New York, 1976) p. 301.

    Google Scholar 

  18. J.R. Gancedo and M. Gracia, Hyp. Interact. 29 (1986) 1097.

    Article  Google Scholar 

  19. J.A. Sawicki and B.D. Sawicka, Hyp. Interact. 13 (1983) 199.

    Article  Google Scholar 

  20. A.P. Amulyavichyus and R.Yu. Davidonis, Instrum. Exp. Tech. (Engl. transl.) 29 (1986) 590.

    Google Scholar 

  21. H. Nakagawa, Y. Ujihira and M. Inaba, Nucl. Instr. Meth. 196 (1982) 573.

    Article  Google Scholar 

  22. A.P. Kuprin and A.A. Novakova, Nucl. Instr. Meth. Phys. Res. B 62 (1992) 493.

    Article  ADS  Google Scholar 

  23. S. Kishimoto, Y. Isozumi, R. Katano and H. Takekoshi, Nucl. Instr. Meth. Phys. Res. A 262 (1987) 413.

    Article  ADS  Google Scholar 

  24. K. Fukumura, R. Katano, T. Kobayashi, A. Nakanishi and Y. Isozumi, Nucl. Instr. Meth. Phys. Res. A 301 (1991) 482.

    Article  ADS  Google Scholar 

  25. K. Fukumura, A. Nakanishi and T. Kobayashi, Nucl. Instr. Meth. Phys. Res. B 86 (1994) 387.

    Article  ADS  Google Scholar 

  26. J.A. Sawicki, T. Tyliszczak and O. Gzowski, Nucl. Instr. Meth. 190 (1981) 433.

    Article  Google Scholar 

  27. Ph. Bauer and G. Marchal, in ICAME-95 Conference Proceedings, Vol. 50, ed. I. Ortalli (SIF, Bologna, 1996), p. 895.

    Google Scholar 

  28. H. Sato and M. Mitsuhashi, Hyp. Interact. 58 (1990) 2535.

    Article  Google Scholar 

  29. Zs. Kajcsos, W. Meisel, E. Kuzmann, C. Tosello, M.L. Gratton, A. Vértes, P. Gütlich and D.L. Nagy, Hyp. Interact. 57 (1990) 1883.

    Article  Google Scholar 

  30. W. Meisel and P. Gütlich, Hyp. Interact. 69 (1991) 815.

    Article  Google Scholar 

  31. W. Meisel, P. Tippman-Krayer, H. Möhwald and P. Gütlich, Fresenius J. Anal. Chem. 341 (1991) 289.

    Article  Google Scholar 

  32. W. Meisel, T. Faldum, D. Sprenger and P. Gütlich, Fresenius J. Anal. Chem. 346 (1993) 110.

    Article  Google Scholar 

  33. M.E. Kordesch, J. Eldridge, D. Scherson and R.W. Hoffmann, J. Electroanal. Chem. 164 (1984) 393.

    Google Scholar 

  34. W. Meisel, U. Stumm, C. Thilmann, J.R. Gancedo and P. Gütlich, Hyp. Interact. 41 (1988) 669.

    Article  Google Scholar 

  35. T. Kobayashi, K. Fukumura, Y. Isozumi and R. Katano, Hyp. Interact. 57 (1990) 1923.

    Article  Google Scholar 

  36. G. von Eynatten, K. Nothhelfer and K. Dransfeld, Hyp. Interact. 69 (1991) 759.

    Article  Google Scholar 

  37. M. Carbucicchio, A. Casagrande and G. Palombarini, Hyp. Interact. 57 (1990) 1769.

    Article  Google Scholar 

  38. J.R. Gancedo, M. Gracia, J.F. Marco and J.F. Palacios, Hyp. Interact. 41 (1988) 791.

    Article  Google Scholar 

  39. A. Proykova, Nucl. Instr. Meth. 160 (1979) 321.

    Article  Google Scholar 

  40. T.S.V. Bonchev, A. Minkova, G. Kushev and M. Grozdanov, Nucl. Instr. Meth. 147 (1977) 481.

    Article  Google Scholar 

  41. D. Liljequist, Nucl. Instr. Meth. 155 (1978) 529.

    Article  Google Scholar 

  42. D. Liljequist, Nucl. Instr. Meth. 179 (1981) 617.

    Article  Google Scholar 

  43. F. Salvat and J. Parellada, Nucl. Instr. Meth. Phys. Res. B 1 (1984) 70.

    Article  ADS  Google Scholar 

  44. J.A. Tabares, M. Gracia, J.F. Marco and J.R. Gancedo, Nuovo Cimento D 18 (1996) 325.

    Google Scholar 

  45. G. Klingelhöfer and W. Meisel, Hyp. Interact. 57 (1990) 1911.

    Article  Google Scholar 

  46. G. Klingelhöfer and E. Kankeleit, Hyp. Interact. 57 (1990) 1905.

    Article  Google Scholar 

  47. J. Parellada, M.R. Polkari, K. Burin and G.M. Rothberg, Nucl. Instr. Meth. 179 (1981) 113.

    Article  Google Scholar 

  48. T.S. Yang, B. Kolk, T. Kachnowski, J. Trooster and N. Benczer-Koller, Nucl. Instr. Meth. 197 (1982) 545.

    Article  Google Scholar 

  49. Z.M. Stadnik, H.R. Borsje, A.E.M. Swolfs, W.H.A. Leenders and J.C. Fuggle, Rev. Sci. Instrum. 60 (1989) 708.

    Article  ADS  Google Scholar 

  50. P. Auric, A. Baudry, M. Bogé, J. Rocco and L. Trabut, Hyp. Interact. 58 (1990) 2491.

    Article  Google Scholar 

  51. J.A. Tabares, PhD Thesis (Universidad Complutense, Madrid, 1995).

  52. T. Toriyama, K. Asano, K. Saneyoshi and K. Hisatake, Nucl. Instr. Meth. Phys. Res. B 4 (1984) 170.

    Article  ADS  Google Scholar 

  53. H.M. Van Noort, F.J. Ferguson, C.J.G. Verwer, A.A. Gorkum, J.M.E. Van Laarhoven and C.J.M. Denissen, Nucl. Instr. Meth. Phys. Res. B 34 (1988) 391.

    Article  ADS  Google Scholar 

  54. H.M. Van Noort and A.A. Van Gorkum, J. Phys. E. Sci. Instrum. 21 (1988) 587.

    Article  ADS  Google Scholar 

  55. W. Meisel, Hyp. Interact. 45 (1989) 73.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gancedo, J., Dávalos, J., Gracia, M. et al. The use of Mössbauer spectroscopy in surface studies. A methodological survey. Hyperfine Interactions 110, 41–50 (1997). https://doi.org/10.1023/A:1012675416387

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012675416387

Keywords

Navigation