Skip to main content

Chemical Applications of Mössbauer Spectroscopy

  • Chapter
  • First Online:
Mössbauer Spectroscopy

Abstract

The Tutorial Lecture begins with a brief recapitulation of the hyperfine interactions and the relevant parameters observable in a Mössbauer spectrum. The main chapter with selected examples of chemical applications of Mössbauer spectroscopy follows and is subdivided into sections on: basic information on structure and bonding; switchable molecules (thermal spin transition in mono- and oligonuclear coordination compounds, light-induced spin transition, nuclear-decay-induced spin transition, spin transition in metallomesogens); mixed-valency in biferrocenes and other iron coordination compounds, and in an europium intermetallic compound; electron transfer in Prussian blue-analog complexes; molecule-based magnetism; industrial chemical problems like corrosion; application of a portable miniaturized Mössbauer spectrometer for applications outside the laboratory and in space. The Lecture ends with concluding remarks and an outlook to future developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.95
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

δ :

Isomer shift

ΔE Q :

Quadrupole splitting

ΔE M :

Magnetic splitting

EFG:

Electric field gradient

B c :

Fermi contact field

B D :

Spin dipolar field

eQ :

Quadrupole moment

β N :

Nuclear Bohr magneton

g N :

Nuclear Landé factor

g :

Landé splitting factor

H eff :

Effective hyperfine field

H ext :

External field

HS:

High-spin

LS:

Low-spin

SCO:

Spin crossover

ST:

Spin transition

LIESST:

Light induced excited spin state trapping

NIESST:

Nuclear decay-induced excited spin state trapping

ZFS:

Zero-field splitting

AF:

Antiferromagnetic

T 1/2 :

Transition temperature

LC:

Liquid-crystal

1D:

One-dimensional

EXAFS:

Extended X-ray absorption fine structure

DSC:

Differential scanning calorimetry

TGA:

Thermo-gravimetric analysis

MAS:

Mössbauer absorption spectroscopy

MES:

Mössbauer emission spectroscopy

MIMOS:

Miniaturized Mössbauer spectrometer

APXS:

Alpha particle X-ray spectrometer

MER:

Mars exploration rover

RAT:

Rock abrasion tool

NFS:

Nuclear forward scattering

NIS:

Nuclear inelastic scattering

PDOS:

Partial density of states

ptz:

1-propyl-tetrazole

mtz:

1-methyl-tetrazole

phen:

1,10-phenanthroline

phdia:

4,7-phenanthroline-5,6-diamine

bpym:

Bipyrimidine

pmatrz:

4-amino-3,5-bis{[(2-pyridyl-methyl)amino]methyl}-4H-1,2,4-triazole

iptrz:

4-isopropyl-1,2,4-triazole

hyetrz:

4-(2′-hydroxy-ethyl)-1,2,4-triazole

C10-tba:

3,5-bis(decyloxy)-N-(4H-1,2,4-triazol-4-yl)benzamide

C12-tba:

3,5-bis(dodecyloxy)-N-(4H-1,2,4-triazol-4-yl)benzamide

Cn-tba:

3,5-bis(alkoxy)-N-(4H-1,2,4-triazol-4-yl)benzamide

TB-LMTO-ASA:

Tight-binding linear Muffin-Tin Orbital atomic-sphere approximation

References

  1. R.L. Mössbauer, Fluorescent nuclear resonance of γ-radiation in Iriridium-191. Z. Physik 151, 124–143 (1958)

    Article  ADS  Google Scholar 

  2. R.L. Mössbauer, Kernresonanzabsorption von gammastrahlung in Ir191. Naturwissenschaften 45, 538–539 (1958)

    Article  ADS  Google Scholar 

  3. R.L. Mössbauer, Recoiless nuclear resonance absorption of γ-radiation. Science 137, 731–738 (1962)

    Article  ADS  Google Scholar 

  4. R.L. Mössbauer, The discovery of the Mössbauer effect. Hyperfine Interact. 126, 1–12 (2000)

    Article  ADS  Google Scholar 

  5. O.C. Kistner, A.W. Sunyar, Evidence for quadrupole interaction of Fe57m, and influence of chemical binding on nuclear γ-ray energy. Phys. Rev. Lett. 4, 412–415 (1960)

    Article  ADS  Google Scholar 

  6. V.I. Goldanskii, R. Herber (eds.), Chemical Applications of Mössbauer Spectroscopy (Academic, New York, 1968)

    Google Scholar 

  7. N.N. Greenwood, T.C. Gibb, Mössbauer Spectroscopy (Chapman and Hall, London, 1971)

    Book  Google Scholar 

  8. U. Gonser (ed.), Mössbauer Spectroscopy, in Topics in Applied Physics, vol. 5 (Springer, Berlin, 1975)

    Google Scholar 

  9. T.C. Gibb, Principles of Mössbauer Spectroscopy (Wiley, New York, 1976)

    Google Scholar 

  10. P. Gütlich, R. Link, A.X. Trautwein, Mössbauer Spectroscopy and Transition Metal Chemistry. Inorganic Chemistry Concepts Series, vol. 3, 1st edn. (Springer, Berlin, 1978)

    Google Scholar 

  11. G.J. Long, Mössbauer Spectroscopy Applied to Inorganic Chemistry, Modern Inorganic Chemistry Series, vol. 1 (Plenum, New York, 1984)

    Google Scholar 

  12. R.H. Herber, Chemical Mössbauer Spectroscopy (Plenum, New York, 1984)

    Google Scholar 

  13. G.J. Long, Mössbauer Spectroscopy Applied to Inorganic Chemistry, Modern Inorganic Chemistry Series, vol. 2 (Plenum, New York, 1989)

    Google Scholar 

  14. G.J. Long, F. Grandjean, Mössbauer Spectroscopy Applied to Inorganic Chemistry, Modern Inorganic Chemistry Series, vol. 3 (Plenum, New York, 1989)

    Google Scholar 

  15. G.J. Long, F. Grandjean, Mössbauer Spectroscopy Applied to Magnetism and Materials Science, vol. 1 (Plenum, New York, 1993)

    Google Scholar 

  16. G.J. Long, F. Grandjean, Mössbauer Spectroscopy Applied to Magnetism and Materials Science, vol. 2 (Plenum, New York, 1996)

    Google Scholar 

  17. P. Gütlich, E. Bill, A.X. Trautwein, (Mössbauer Spectroscopy and Transition Metal Chemistry, Springer, 2011)

    Google Scholar 

  18. N.E. Erickson, A.W. Fairhall, Mössbauer spectra of iron in Na2[Fe(CO)4] and Na[Fe3(CO)11H] and comments regarding the structure of Fe3(CO)12. Inorg. Chem. 4, 1320–1322 (1965)

    Article  Google Scholar 

  19. R. Greatrex, N.N. Greenwood, Mössbauer spectra, structure, and bonding in iron carbonyl derivatives. Discuss. Faraday Soc. 47, 126–135 (1969)

    Article  Google Scholar 

  20. E. Müller, Berlin blue and Turnbull’s blue. Chemik. Zeit. 38, 281–282 (1914)

    Google Scholar 

  21. E. Fluck, W. Kerler, W. Neuwirth, Der Mößbauer-Effekt und seine bedeutung für die chemie. Angew. Chem. 75, 461–472 (1963)

    Article  Google Scholar 

  22. K. Maer Jr, M.L. Beasley, R.L. Collins, W.O. Milligan, Structure of the titanium-iron cyanide complexes. J. Am. Chem. Soc. 90, 3201–3208 (1968)

    Article  Google Scholar 

  23. P. Gütlich, A. Hauser, H. Spiering, Thermal and optical switching of iron(II) complexes. Angew. Chem. Int. Ed. Engl. 33, 2024–2054 (1994)

    Article  Google Scholar 

  24. P. Gütlich, Y. Garcia, H.A. Goodwin, Spin crossover phenomena in Fe(II) complexes. Chem. Soc. Rev. 29, 419–427 (2000)

    Article  Google Scholar 

  25. P. Gütlich, H.A. Goodwin (eds.), Spin crossover in transition metal compounds. Top. Curr. Chem. 233–235 (2004)

    Google Scholar 

  26. S. Decurtins, P. Gütlich, C.P. Köhler, H. Spiering, A. Hauser, Light-induced excited spin state trapping in a transition-metal complex: the hexa-1-propyltetrazole-iron(II) tetrafluoroborate spin crossover system. Chem. Phys. Lett. 105, 1–4 (1984)

    Article  ADS  Google Scholar 

  27. I. Dezsi, B. Molnar, T. Tarnoczi, K. Tompa, On the magnetic behaviour of iron(II)-bis-(1,10 phenantroline)-thiocyanate between −190° and 30° C. J. Inorg. Nucl. Chem 29, 2486–2490 (1967)

    Article  Google Scholar 

  28. E.W. Müller, J. Ensling, H. Spiering, P. Gütlich, High-spin ↔ low-ST in hexacoordinate complexes of iron(II) with monodentate 1-alkyltetrazole ligands: a variable-temperature Mössbauer, magnetic susceptibility, and far-infrared study. Inorg. Chem. 22, 2074–2078 (1983)

    Article  Google Scholar 

  29. A. Hauser, Reversibility of light-induced excited spin state trapping in the [Fe(ptz)6](BF4)2, and the [Zn1 − xFex(ptz)6](BF4)2 spin crossover systems. Chem. Phys. Lett. 124, 543–548 (1986)

    Article  ADS  Google Scholar 

  30. L. Wiehl, Structures of hexakis(1-propyltetrazole)iron(II) bis(tetrafluoroborate), [Fe(CHN4C3H7)6](BF4)2, hexakis(1-methyltetrazole)iron(II) bis(tetrafluoroborate), [Fe(CHN4CH3)6](BF4)2, and the analogous perchlorates. Their relation to spin crossover behaviour and comparison of Debye-Waller factors from structure determination and Mössbauer spectroscopy. Acta Cryst. B 49, 289–303 (1993)

    Article  Google Scholar 

  31. P. Poganiuch, S. Decurtins, P. Gütlich, Thermal- and light-induced spin transition in [Fe(mtz)6](BF4)2: first successful formation of a metastable low-spin state by irradiation with light at low temperatures. J. Am. Chem. Soc. 112, 3270–3278 (1990)

    Article  Google Scholar 

  32. G. De Munno, M. Julve, J.A. Real, F. Lloret, R. Scopelliti, Synthesis, crystal structure and magnetic properties of the chiral iron(II) chain [Fe(bpym)(NCS)2]n (bpym = 2,2′-bipyrimidine). Inorg. Chim. Acta 250, 81–85 (1996)

    Article  Google Scholar 

  33. V. Ksenofontov, A.B. Gaspar, J.A. Real, P. Gütlich, Pressure-induced spin state conversion in antiferromagnetically coupled Fe(II) dinuclear complexes. J. Phys. Chem. B 105, 12266–12271 (2001)

    Article  Google Scholar 

  34. V. Ksenofontov, H. Spiering, S. Reiman, Y. Garcia, A.B. Gaspar, N. Moliner, J.A. Real, P. Gütlich, Direct monitoring of spin state in dinuclear iron(II) coordination compounds. Chem. Phys. Lett. 348, 381–386 (2001)

    Article  ADS  Google Scholar 

  35. V. Ksenofontov, H. Spiering, S. Reiman, Y. Garcia, A.B. Gaspar, J.A. Real, P. Gütlich, Determination of spin state in dinuclear iron(II) coordination compounds using applied field Mössbauer spectroscopy. Hyperfine Interact. 141/142, 47–52 (2002)

    Article  ADS  Google Scholar 

  36. R. Zimmermann, G. Ritter, H. Spiering, Mössbauer spectra of the tetrakis-(1,8-naphthyridine) iron(II) perchlorate in external magnetic fields. Evidence of slow relaxation ln paramagnetic iron(II). Chem. Phys. 4, 133–141 (1974)

    Article  Google Scholar 

  37. R. Zimmermann, G. Ritter, H. Spiering, D.L. Nagy, A further example of slow relaxation in high-spin iron(II) compounds: Fe(papt)2∙C6H6. J. Phys. 35-C6, 439 (1974)

    Google Scholar 

  38. V. Ksenofontov, A.B. Gaspar, V. Niel, S. Reiman, J.A. Real, P. Gütlich, On the nature of the plateau in two-step dinuclear spin crossover complexes. Chem. Eur. J. 10, 1291–1298 (2004)

    Article  Google Scholar 

  39. Klingele, M. H., Moubaraki, B., Cashion, J. D., Murray, K. S., Brooker, S.: The first X-ray crystal structure determination of a dinuclear complex trapped in the [LS-HS] state \( \left[ {{\text{Fe}}^{\text{II}}_{ 2} \left( {\text{PMAT}} \right)_{ 2} } \right]\left( {{\text{BF}}_{ 4} } \right)_{ 4} \):·DMF. Chem. Comm. 8, 987-989 (2005)

    Google Scholar 

  40. Y. Garcia, C.M. Grunert, S. Reiman, O. van Campenhoudt, Gütlich P (2006) The two-step spin conversion in a supramolecular triple helicate dinuclear iron(II) complex studied by Mössbauer spectroscopy. Eur. J. Inorg. Chem. 17, 3333–3339 (2006)

    Article  Google Scholar 

  41. C.M. Grunert, S. Reiman, H. Spiering, J.A. Kitchen, S. Brooker, P. Gütlich, Mixed spin-state [HS–LS] pairs in a dinuclear spin transition complex: confirmation by variable-temperature 57Fe Mössbauer Spectroscopy. Angew. Chem. Inter. Ed. 47, 2997–2999 (2008)

    Article  Google Scholar 

  42. J.J.A. Kolnaar, G. vanDijk, H. Kooijman, A.L. Spek, V.G. Ksenofontov, P. Gütlich, J.G. Haasnoot, J. Reedijk, Synthesis, structure, magnetic behavior, and Mössbauer spectroscopy of two new iron(II) spin transition compounds with the ligand 4-Isopropyl-1,2,4-triazole. X-ray structure of [Fe3(4-isopropyl-1,2,4-triazole)6(H2O)6](tosylate)6·2H2O. Inorg. Chem. 36, 2433–2440 (1997)

    Article  Google Scholar 

  43. Y. Garcia, P. Guionneau, G. Bravic, D. Chasseau, J.A.K. Howard, O. Kahn, V. Ksenofontov, S. Reiman, P. Gütlich, Synthesis, crystal structure, magnetic properties and 57Fe Mossbauer spectroscopy of the new trinuclear [Fe3(4-(2′-hydroxyethyl)-1,2,4-triazole)6(H2O)6](CF3SO3)6 spin crossover compound. Eur. J. Inorg. Chem. 7, 1531–1538 (2000)

    Article  Google Scholar 

  44. M. Ruben, E. Breuning, J.M. Lehn, V. Ksenofontov, F. Renz, P. Gütlich, G.B.M. Vaughan, Supramolecular Spintronic Devices: Spin transitions and magnetostructural correlations in [Fe II4 L4]8+ [2 × 2]-grid-type complexes. Chem. Eur. J. 9, 4422–4429 (2003)

    Article  Google Scholar 

  45. E. Breuning, M. Ruben, J.-M. Lehn, F. Renz, Y. Garcia, V. Ksenofontov, P. Gütlich, E. Wegelius, K. Rissanen, Spin crossover in a supramolecular Fe II4 [2x2] grid triggered by temperature, pressure, and light. Angew. Chem. Inter. Ed. 39, 2504–2507 (2000)

    Article  Google Scholar 

  46. J.J.A. Kolnaar, M.I. de Heer, H. Kooijman, A.L. Spek, G. Schmitt, V. Ksenofontov, P. Gütlich, J.G. Haasnoot, J. Reedijk, Synthesis, structure and properties of a mixed mononuclear/dinuclear iron(II) spin crossover compound with the ligand 4-(p-tolyl)-1,2,4-triazole. Eur. J. Inorg. Chem. 5, 881–886 (1999)

    Google Scholar 

  47. Y. Galyametdinov, V. Ksenofontov, A. Prosvirin, I. Ovchinnikov, G. Ivanova, P. Gütlich, W. Haase, First example of coexistence of thermal spin transition and liquid-crystal properties. Angew. Chem. Int. Ed. 40, 4269–4271 (2001)

    Article  Google Scholar 

  48. T. Fujigaya, D.L. Jiang, T. Aida, Switching of spin states triggered by a phase transition: spin-crossover properties of self-assembled iron(II) complexes with alkyl-tethered triazole ligands. J. Am. Chem. Soc. 125, 14690–14691 (2003)

    Article  Google Scholar 

  49. S. Hayami, K. Danjobara, K. Inoue, Y. Ogawa, N. Matsumoto, Y. Maeda, A photoinduced spin transition iron(II) complex with liquid-crystal properties. Adv. Mater. 16, 869–872 (2004)

    Article  Google Scholar 

  50. S. Hayami, R. Moriyama, A. Shuto, Y. Maeda, K. Ohta, K. Inoue, Spin transition at the mesophase transition temperature in a cobalt(II) compound with branched alkyl chains. Inorg. Chem. 46, 7692–7694 (2007)

    Article  Google Scholar 

  51. S. Hayami, N. Motokawa, A. Shuto, N. Masuhara, T. Someya, Y. Ogawa, K. Inoue, Y. Maeda, Photoinduced spin transition for iron(II) compounds with liquid-crystal properties. Inorg. Chem. 46, 1789–1794 (2007)

    Article  Google Scholar 

  52. M. Seredyuk, A.B. Gaspar, V. Ksenofontov, Y. Galyametdinov, J. Kusz, P. Gütlich, Iron(II) metallomesogens exhibiting coupled spin state and liquid crystal phase transitions near room temperature. Adv. Funct. Mater. 18, 2089–2101 (2008)

    Article  Google Scholar 

  53. M. Seredyuk, A.B. Gaspar, V. Ksenofontov, Y. Galyametdinov, M. Verdaguer, F. Villain, P. Gütlich, One-dimensional iron(II) compounds exhibiting spin crossover and liquid crystalline properties in the room temperature region. Inorg. Chem. 47, 10232–10245 (2008)

    Article  Google Scholar 

  54. M. Seredyuk, A.B. Gaspar, V. Ksenofontov, Y. Galyametdinov, J. Kusz, P. Gütlich, Does the solid–liquid crystal phase transition provoke the spin-state change in spin-crossover metallomesogens? J. Am. Chem. Soc. 130, 1431–1439 (2008)

    Article  Google Scholar 

  55. M. Seredyuk, A.B. Gaspar, V. Ksenofontov, S. Reiman, Y. Galyametdinov, W. Haase, E. Rentschler, P. Gütlich, Room temperature operational thermochromic liquid crystals. Chem. Mater. 18, 2513–2519 (2006)

    Article  Google Scholar 

  56. M. Seredyuk, A.B. Gaspar, V. Ksenofontov, S. Reiman, Y. Galyametdinov, W. Haase, E. Rentschler, P. Gütlich, Multifunctional materials exhibiting spin crossover and liquid-crystalline properties. Interplay between spin crossover and liquid-crystal properties in iron(II) coordination complexes. Hyperfine Interact. 166, 385–390 (2006)

    Article  ADS  Google Scholar 

  57. A.B. Gaspar, M. Seredyuk, P. Gütlich, Spin crossover in metallomesogens. Coord. Chem. Rev. 253, 2399–2413 (2009)

    Article  Google Scholar 

  58. Y. Garcia, P.J. Van Koningsbruggen, R. Lapouyade, L. Fournes, L. Rabardel, O. Kahn, V. Ksenofontov, G. Levchenko, P. Gütlich, Influences of temperature, pressure, and lattice solvents on the spin transition regime of the polymeric compound [Fe(hyetrz)3]A2·3H2O (hyetrz = 4-(2′-hydroxyethyl)-1,2,4-triazole and A = 3-nitrophenylsulfonate). Chem. Mater. 10, 2426–2433 (1998)

    Article  Google Scholar 

  59. P. Gütlich, Nuclear decay induced excited spin state trapping (NIESST). Top. Curr. Chem. 234, 231–260 (2004)

    Article  Google Scholar 

  60. R. Grimm, P. Gütlich, E. Kankeleit, R. Link, Time and temperature dependence of aftereffects in [57Co(phen)3](ClO4)2·2H2O from time-differential Mössbauer emission spectroscopy. J. Chem. Phys. 67, 5491 (1977)

    Article  ADS  Google Scholar 

  61. R. Albrecht, M. Alfen, P. Gütlich, Z. Kajcsos, R. Schulze, H. Spiering, F. Tuczek, A new spectrometer for time-differential Mössbauer emission spectroscopy (TDMES). Nucl. Instr. Methods 257, 209–214 (1987)

    Article  ADS  Google Scholar 

  62. J. Ensling, B.W. Fitzsimmons, P. Gütlich, K.M. Hasselbach, Anomalous spin states of iron(II) in [Fe(phen)3](ClO4)2·2H2O. Angew. Chem. Int. Ed. 9, 637 (1970)

    Article  Google Scholar 

  63. H. Sano, P. Gütlich, Hot atom chemistry in relation to Mössbauer emission spectroscopy, in Hot Atom Chemistry, ed. by T. Matsuura (Kodansha Ltd., Tokyo, 1984), p. 26

    Google Scholar 

  64. J. Ensling, P. Gütlich, K.M. Hasselbach, B.W. Fitzsimmons, Anomalous spin states of iron(II) in 57Fe Mössbauer emission spectra of [57Co(phen)2(NCS)2] and [57Co(bipy)2(NCS)2](cis). Chem. Phys. Lett. 42, 232–236 (1976)

    Article  ADS  Google Scholar 

  65. A. Oshio, H. Spiering, V. Ksenofontov, F. Renz, P. Gütlich, Electronic relaxation phenomena following 57Co(EC)57Fe nuclear decay in [MnII(terpy)2](ClO4)2·1/2H2O and in the spin crossover complexes [CoII(terpy)2]X2·nH2O (X = Cl and ClO4): a Mössbauer emission spectroscopic study. Inorg. Chem. 40, 1143–1150 (2001)

    Article  Google Scholar 

  66. S. Iijima, R. Saida, I. Motoyama, H. Sano, The temperature dependence of the trapped and averaged-valence state in mono-oxidized dialkylbiferrocenes. Bull. Chem. Soc. Jpn. 54, 1375–1379 (1981)

    Article  Google Scholar 

  67. M.J. Cohn, M.D. Timken, D.N. Hendrickson, Mössbauer spectroscopy of mixed-valence biferrocenes in high magnetic fields. J. Am. Chem. Soc. 106, 6683–6689 (1984)

    Article  Google Scholar 

  68. C.C. Wu, H.G. Jang, A.L. Rheingold, P. Gütlich, D.N. Hendrickson, Solvate molecule effects and unusual 57Fe Mössbauer line broadening in the valence detrapping of mixed-valence [Fe3O(O2CCH3)6(3-Et-py)3]·S. Inorg. Chem. 35, 4137–4147 (1996)

    Article  Google Scholar 

  69. T. Glaser, T. Beissel, E. Bill, T. Weyhermüller, V. Schünemann, W. Meyer-Klaucke, A.X. Trautwein, K. Wieghardt, Electronic structure of linear thiophenolate-bridged heterotrinuclear complexes [LFeMFeL]n + (M = Cr, Co., Fe; n = 1–3): localized vs delocalized models. J. Am. Chem. Soc. 121, 2193–2208 (1999)

    Article  Google Scholar 

  70. V. Ksenofontov, H.C. Kandpal, J. Ensling, M. Waldeck, D. Johrendt, A. Mewis, P. Gütlich, C. Felser, Verwey type transition in EuNiP. Europhys. Lett. 74, 672–678 (2006)

    Article  ADS  Google Scholar 

  71. O. Kahn, Molecular Magnetism (VCH Publishers Inc, Weinheim, 1993)

    Google Scholar 

  72. J.S. Miller, M. Drillon (eds.), Magnetism: Molecules to Materials, vol. I–III (Wiley, Weinheim, 2001)

    Google Scholar 

  73. V. Ksenofontov, G. Levchenko, S. Reiman, P. Gutlich, A. Bleuzen, V. Escax, M. Verdaguer, Pressure-induced electron transfer in ferrimagnetic Prussian blue analogs. Phys. Rev. B 68, 024415 (2003)

    Article  ADS  Google Scholar 

  74. W.M. Reiff, A.M. LaPointe, E. Witten, Virtual free ion magnetism and the absence of Jahn–Teller distortion in a linear two-coordinate complex of high-spin iron(II). J. Am. Chem. Soc. 126, 10206–10207 (2004)

    Article  Google Scholar 

  75. A.M. LaPointe, Fe[C(SiMe3)3]2: synthesis and reactivity of a monomeric homoleptic iron(II) alkyl complex Inorg. Chim. Acta 345, 359–362 (2003)

    Google Scholar 

  76. J. Ensling, P. Gütlich, Laboratory Report, University of Mainz, 1985; Gütlich, P., Schröder, C.: Mössbauer spectroscopy. Bunsen-Magazin 1, 4–22 (2010)

    Google Scholar 

  77. G. Klingelhöfer, R.V. Morris, B. Bernhardt, D. Rodionov, P.A. de Souza Jr, S.W. Squyres, J. Foh, E. Kankeleit, U. Bonnes, R. Gellert, C. Schröder, S. Linkin, E. Evlanov, B. Zubkov, O. Prilutski, The Athena MIMOS II Mössbauer spectrometer investigation. J. Geophys. Res. 108, 8067 (2003)

    Article  Google Scholar 

  78. G. Klingelhöfer, D. Rodionov, M. Blumers, L. Strüder, P. Lechner, B. Bernhardt, H. Henkel, I. Fleischer, C. Schröder, J. Girones Lopez, G. Studlek, J. Maul, J. Fernandez-Sanchez, C. d’Uston, The advanced miniaturised Mössbauer spectrometer MIMOS IIa: increased sensitivity and new capability for elemental analysis. Lunar Planet. Sci. 39, 2379 (2008)

    ADS  Google Scholar 

  79. E. Wagner, A. Kyek, Mössbauer spectroscopy in archaeology: introduction and experimental considerations. Hyperfine Interact. 154, 5–33 (2004)

    Article  ADS  Google Scholar 

  80. G. Klingelhöfer, G.M. da Costa, A. Prous, B. Bernhardt, Rock paintings from Minas Gerais, Brasil, investigated by in situ Mössbauer spectroscopy. Hyperfine. Interact. C 5, 423–426 (2002)

    Article  Google Scholar 

  81. P.A. de Souza Jr, B. Bernhardt, G. Klingelhöfer, P. Gütlich, Surface analysis in archaeology using the miniaturized Mössbauer spectrometer MIMOS II. Hyperfine Interact. 151, 125–130 (2003)

    Article  ADS  Google Scholar 

  82. S.W. Squyres, R.E. Arvidson, E.T. Baumgartner, J.F. Bell III, P.R. Christensen, S. Gorevan, K.E. Herkenhoff, G. Klingelhöfer, M.B. Madsen, R.V. Morris, R. Rieder, R.A. Romero, Athena Mars rover science investigation. J. Geophys. Res. 108, 8062 (2003)

    Article  Google Scholar 

  83. S.W. Squyres, R.E. Arvidson, J.F. Bell III, J. Brückner, N.A. Cabrol, W. Calvin, M.H. Carr, P.R. Christensen, B.C. Clark, L. Crumpler, D.J. Des Marais, C. d’Uston, T. Economou, J. Farmer, W. Farrand, W. Folkner, M. Golombek, S. Gorevan, J.A. Grant, R. Greeley, J. Grotzinger, L. Haskin, K.E. Herkenhoff, S. Hviid, J. Johnson, G. Klingelhöfer, A. Knoll, G. Landis, M. Lemmon, R. Li, M.B. Madsen, M.C. Malin, S.M. McLennan, H.Y. McSween, D.W. Ming, J. Moersch, R.V. Morris, T. Parker, J.W. Rice Jr, L. Richter, R. Rieder, M. Sims, M. Smith, P. Smith, L.A. Soderblom, R. Sullivan, H. Wänke, T. Wdowiak, M. Wolff, A. Yen, The spirit Rover’s Athena science investigation at Guser crater, Mars. Science 305, 794–799 (2004)

    Article  ADS  Google Scholar 

  84. G. Klingelhöfer, E. De Grave, R.V. Morris, A. Alboom, V.G. Resende, P.A. Souza Jr, D. Rodionov, C. Schroeder, D.W. Ming, A. Yen, Mössbauer spectroscopy on Mars: goethite in the Columbia Hills at Gusev crater. Hyperfine Interact. 166, 549 (2006)

    Article  ADS  Google Scholar 

  85. R.V. Morris, G. Klingelhöfer, B. Bernhardt, C. Schröder, D.S. Rodionov, P.A. Jr de Souza, A. Yen, R. Gellert, E.N. Evlanov, J. Foh, E. Kankeleit, P. Gütlich, D.W. Ming, F. Renz, T. Wdowiak, S.W. Squyres, R.E. Arvidson, Mineralogy at Gusev crater from the Mössbauer spectrometer on the spirit rover. Science 305, 833–836 (2004)

    Article  ADS  Google Scholar 

  86. S.W. Squyres, R.E. Arvidson, J.F. Bell III, J. Brückner, N.A. Cabrol, W. Calvin, M.H. Carr, P.R. Christensen, B.C. Clark, L. Crumpler, D.J. Des Marais, C. d’Uston, T. Economou, J. Farmer, W. Farrand, W. Folkner, M. Golombek, S. Gorevan, J.A. Grant, R. Greeley, J. Grotzinger, L. Haskin, K.E. Herkenhoff, S. Hviid, J. Johnson, G. Klingelhöfer, A.H. Knoll, G. Landis, M. Lemmon, R. Li, M.B. Madsen, M.C. Malin, S.M. McLennan, H.Y. McSween, D.W. Ming, J. Moersch, R.V. Morris, T. Parker, J.W. Rice Jr, L. Richter, R. Rieder, M. Sims, P. Smith, L.A. Soderblom, R. Sullivan, H. Wänke, T. Wdowiak, M. Wolff, A. Yen, The opportunity rover’s Athena science investigation at Meridiani planum, Mars. Science 306, 1698–1703 (2004)

    Article  ADS  Google Scholar 

  87. L.A. Soderblom, R.C. Anderson, R.E. Arvidson, J.F. Bell III, N.A. Cabrol, W. Calvin, P.R. Christensen, B.C. Clark, T. Economou, B.L. Ehlmann, W.H. Farrand, D. Fike, R. Gellert, T.D. Glotch, M.P. Golomber, R. Greeley, J. Grotzinger, K.E. Herkenhoff, D.J. Jerolmack, J.R. Johnson, B. Joliff, G. Klingelhöfer, A.H. Knoll, Z.A. Learner, R. Li, M.C. Malin, S.M. McLennan, H.Y. McSween, D.W. Ming, R.V. Morris, J.W. Rice Jr, L. Richter, R. Rieder, D. Rodionov, C. Schröder, F.P. Seelos IV, J.M. Soderblom, S.W. Squyres, R. Sullivan, W.A. Watters, C.M. Weitz, M.B. Wyatt, A. Yen, J. Zipfel, Soils of Eagle crater and Meridiani planum at the opportunity rover landing site. Science 306, 1723–1726 (2004)

    Article  ADS  Google Scholar 

  88. S.W. Squyres, J.P. Grotzinger, R.E. Arvidson, J.F. Bell III, W. Calvin, P.R. Christensen, B.C. Clark, J.A. Crisp, W.H. Farrand, K.E. Herkenhoff, J.R. Johnson, G. Klingelhöfer, A.H. Knoll, S.M. McLennan, H.Y. McSween Jr, R.V. Morris, J.W. Rice Jr, R. Rieder, L.A. Soderblom, In situ evidence for an ancient aqueous environment at Meridiani planum, Mars. Science 306, 1709–1714 (2004)

    Article  ADS  Google Scholar 

  89. S.W. Squyres, A.H. Knoll, R.E. Arvidson, B.C. Clark, J.P. Grotzinger, B.L. Jolliff, S.M. McLennan, N. Tosca, J.F. Bell III, W. Calvin, W.H. Farrand, T.D. Glotch, M.P. Golombek, K.E. Herkenhoff, J.R. Johnson, G. Klingelhöfer, H.Y. McSween, A.S. Yen, Two years at Meridiani planum: results from the opportunity rover. Science 313, 1403–1407 (2006)

    Article  ADS  Google Scholar 

  90. G. Klingelhöfer, R.V. Morris, B. Bernhardt, C. Schroeder, D.S. Rodionov, P.A. Jr de Souza, A. Yen, R. Gellert, E.N. Evlanov, B. Zubkov, J. Foh, U. Bonnes, E. Kankeleit, P. Gütlich, D.W. Ming, F. Renz, T. Wdowiak, S.W. Squyres, R.E. Arvidson, Jarosite and hematite at Meridiani Planum from Opportunity’s Mossbauer spectrometer. Science 306, 1740–1745 (2004)

    Article  ADS  Google Scholar 

  91. R.V. Morris, G. Klingelhöfer, C. Schröder, D.S. Rodionov, A. Yen, D.W. Ming, P.A. De Souza Jr, T. Wdowiak, I. Fleischer, R. Gellert, B. Bernhardt, U. Bonnes, B.A. Cohen, E.N. Evlanov, J. Foh, P. Gütlich, E. Kankeleit, T. McCoy, D.W. Mittlefehldt, F. Renz, M.E. Schmidt, B. Zubkov, S.W. Squyres, R.E. Arvidson, Mössbauer mineralogy of rock, soil, and dust at Meridiani Planum. Mars: Opportunity’s journey across sulfate-rich outcrop, basaltic sand and dust, and hematite lag deposits. J. Geophys. Res. 111, 1215 (2006)

    Google Scholar 

  92. A.H. Knoll, M. Carr, B. Clark, D.J. Des Marais, J.D. Farmer, W.W. Fischer, J.P. Grotzinger, S.M. McLennan, M. Malin, C. Schröder, S. Squyres, N.J. Tosca, T. Wdowiak, An astrobiological perspective on Meridiani Planum. Earth Planet. Sci. Lett. 240, 179–189 (2005)

    Article  ADS  Google Scholar 

  93. E. Gerdau, R. Rüffer, H. Winkler, W. Tolksdorf, C.P. Klages, J.P. Hannon, Nuclear Bragg diffraction of synchrotron radiation in yttrium iron garnet. Phys. Rev. Lett. 54, 835–838 (1985)

    Article  ADS  Google Scholar 

  94. P. Gütlich, Y. Garcia, Mössbauer spectroscopy: elegance and versatility in chemical diagnostics. J. Phys. Conf. Ser. 217, 012001 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie and the Fonds National de la Recherche Scientifique (FNRS) for financial support.

Dedicated to Professor Wolfgang Kaim on the occasion of his 60th birthday.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Message to the Next Generation

Message to the Next Generation

Looking back over nearly five decades of working with Mössbauer spectroscopy in combination with other physical methods for characterizing inorganic compounds, mainly those exhibiting electronic structure phenomena, I can now state with great satisfaction that it was an excellent decision to learn Mössbauer spectroscopy and apply it as a “forefront tool” in our research projects. I had first learned about it as a young postdoctoral fellow at Brookhaven National Laboratory in USA in the early sixties, shortly after the discovery of the “recoilless nuclear resonance absorption” by the young german physicist Rudolf L. Mössbauer, who made this magnificent discovery while he was working on his doctoral thesis at the Max Planck Institute in Heidelberg. Rudolf Mössbauer was only 32 years old when he received the Nobel in Physics in 1961. It was very fortunate for me to be accepted in a team of excellent physicists at Brookhaven National Laboratory, who had concentrated on applying the Mössbauer effect to characterize inorganic compounds and alloys by measuring the hyperfine interactions. It soon became clear that Mössbauer’s unique discovery would develop rapidly to a powerful spectroscopic tool in materials science. Now, nearly five decades later, close to 100,000 published reports dealing with Mössbauer spectroscopy, many textbooks, and more than fifty international conferences, symposia and workshops held so far bear testimony to the firm establishment of this nuclear spectroscopic technique in various branches of solid state research, spreading over physics, chemistry, biology, earth- and geoscience, archaeology and industrial applications. Professor Mössbauer was an excellent speaker, and everybody was fascinated when he spoke about the experiments for his doctoral thesis that led him to the discovery of recoilless nuclear resonance absorption. Also, in many unforgettable personal conversations with him I had the pleasure to learn about details concerning his work. Such occasions never ended without discussions about piano music.

During the many years of my teaching spectroscopy in chemistry and physics, Mössbauer spectroscopy has always been my favourite for several reasons: The students become familiar with fundamental aspects on solid state and experimental physics, cry physics, quantum mechanics and theoretical chemistry to name a few. I consider it therefore highly recommendable, even necessary, that Mössbauer spectroscopy and relevant neighbouring fields are always part of the education in physics and chemistry.

Mössbauer spectroscopy has undoubtedly established as an elegant and versatile tool in materials science, mostly in conjunction with other physical techniques in order to reach deeper and more conclusive information in certain studies, but also in cases where certain problems could not be solved with other techniques. Quo vadis, Mössbauer effect research? Two outstanding developments have opened new pathways in Mössbauer spectroscopy and will definitely play a remarkable role in future: Without quality ranking, (1) the instrumental progress regarding the miniaturization of a Mössbauer spectrometer (MIMOS), and (2) the use of synchrotron radiation for observing nuclear resonance fluorescence. MIMOS has most spectacularly demonstrated its usefulness for extraterrestrial studies, viz. the NASA missions to the planet Mars. There are, of course, also hundreds of possibilities to use it on earth in mobile analytical studies outside the laboratory. A real breakthrough in Mössbauer spectroscopy research was initiated by E. Gerdau et al. in 1985 who proposed an unconventional Mössbauer technique based on the possibility to use synchrotron radiation to observe nuclear resonance. Nuclear forward scattering (NFS) allows to study hyperfine interactions, as obtained with conventional Mössbauer spectroscopy; nuclear inelastic scattering (NIS) allows to investigate local phonon spectra (partial density of states, PDOS) at the Mössbauer probe nucleus. Compared, for instance, to Raman spectroscopy, NIS can achieve a higher resolution without perturbation of surrounding vibrations. Both synchrotron radiation techniques, NFS and NIS, are certainly on their way to a great future.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gütlich, P., Garcia, Y. (2013). Chemical Applications of Mössbauer Spectroscopy. In: Yoshida, Y., Langouche, G. (eds) Mössbauer Spectroscopy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32220-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32220-4_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32219-8

  • Online ISBN: 978-3-642-32220-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics