Skip to main content
Log in

Computational Intelligence Techniques for Short-Term Electric Load Forecasting

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

Electric load forecasting has received an increasing attention over the years by academic and industrial researchers and practitioners due to its major role for the effective and economic operation of power utilities. The aim of this paper is to provide a collective unified survey study on the application of computational intelligence (CI) model-free techniques to the short-term load forecasting of electric power plants. All four classes of CI methodologies, namely neural networks (NNs), fuzzy logic (FL), genetic algorithms (GAs) and chaos are addressed. The paper starts with some background material on model-based and knowledge-based forecasting methodologies revealing a number of key issues. Then, the pure NN-based and FL-based forecasting methodologies are presented in some detail. Next, the hybrid neurofuzzy forecasting methodology (ANFIS, GARIC and Fuzzy ART variations), and three other hybrid CI methodologies (KB-NN, Chaos-FL, Neurofuzzy-GA) are reviewed. The paper ends with eight representative case studies, which show the relative merits and performance that can be achieved by the various forecasting methodologies under a large repertory of geographic, weather and other peculiar conditions. An overall evaluation of the state-of-art of the field is provided in the conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abe, S. and Lan, M.-S.: Efficient methods for fuzzy rule extraction from numerical data, in: C. H. Chen (ed.), Fuzzy Logic and Neural Network Handbook, McGraw Hill, New York, 1996, pp. 7.1-7.33.

    Google Scholar 

  2. Asbury, C.: Weather load model for electric demand energy forecasting, IEEE Trans. Power Apparatus Systems 97 (1975), 1111-1116.

    Google Scholar 

  3. Bakirtzis, A. G. et al.: A neural network short term load forecasting model for the Greek power system, IEEE Trans. Power Systems 11 (1996), 858-863.

    Google Scholar 

  4. Bakirtzis, A. G. et al.: Short term load forecasting using fuzzy neural networks, IEEE Trans. Power Systems 10 (1995), 1518-1524.

    Google Scholar 

  5. Beale, R. and Jackson, T.: Neural Computing: An Introduction, Adam Hilger, Bristol/ Philadelphia, 1990.

    Google Scholar 

  6. Bolzern, P. and Fronza, G.: Role of weather inputs in short-term forecasting of electric load, Electric Power Energy Systems 8(1) (1986), 42-46.

    Google Scholar 

  7. Box, G. E. P. and Jenkins, G. M.: Time Series Analysis Forecasting and Control, Holden Day, Oakland, OH, 1976.

    Google Scholar 

  8. Carpenter, G. A., Grossberg, S., and Rosen, D. B.: Fuzzy ART: Fast stable learning and categorization of analog patterns by an adaptive resonance system, Neural Networks 4 (1991), 759-771.

    Google Scholar 

  9. Chen, T., Yu, D., and Moghaddamjo, A.: Weather sensitive short term load forecasting using nonfully connected artificial networks, IEEE Trans. Power Systems 7(3) (1992), 1098-1105.

    Google Scholar 

  10. Christiannse, W. R.: Short term load forecasting using general exponential smoothing, IEEE Trans. Power Apparatus and Systems 90(2) (1971).

  11. Commarmond, P. and Ringwood, J. V.: Quantitative fuzzy modeling of short-time-scale electricity consumption, in: Proc. of Irish Signals and Systems Conf. (ISSC'97), Derry, June 1997.

  12. Dalianis, P., Kitsios, Y., and Tzafestas, S. G.: Graph colouring using fuzzy controlled neural networks, Intell. Automat. Soft Computing 4(4) (1998), 273-288.

    Google Scholar 

  13. De Martino, B., Fusco, G., Mariani, E., Randino, R., and Ricci, P.: A medium and short-term load forecasting model for electric industry, in: IEEE Power Industry Computer Applications Conf. 1979, pp. 186-191.

  14. Dehdashti, A. S.: Forecasting of hourly load by pattern recognition: A deterministic approach, IEEE Trans. Power Apparatus Systems 101 (1982), 3290-3294.

    Google Scholar 

  15. Dillon, T. S., Sesito, S., and Leung, S.: Short term load forecasting using an adaptive neural network, Electric Power Energy Systems 13(4) (1991), 186-192.

    Google Scholar 

  16. El Sharkawi, M.A. and Huang, S. J.: Application of genetic-based neural networks to power system static security assessment, in: Proc. of ISAP '94, 1994, pp. 423-429.

  17. Fahn, C.-S., Lan, K.-T., and Chern, Z.-B.: Fuzzy rules generation using new evolutionary algorithms combined with multilayer perceptions, IEEE Trans. Industr. Electronics 46(6) (1999), 1103-1113.

    Google Scholar 

  18. Fonseca, C. M., Mendes, E. M., Fleming, P. J., and Billings, S. A.: Nonlinear model-term selection with genetic algorithms, in: Proc. of IEE/IEEE Workshop on Natural Algorithms for Signal Processing, 1993, pp. 27/1-27/8.

  19. Goldberg, D. E.: Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, Reading, MA, 1989.

    Google Scholar 

  20. Gross, G. and Galiana, F. D.: Short-term load forecasting, Proc. IEEE, December 1987.

  21. Gupta, P. C.: A stochastic approach to peak power demand forecasting in Electric utility systems, IEEE Trans. Power Apparatus Systems 90(3) (1971).

  22. Hagan, M. T. and Behr, S. M.: The time series approach to short term load forecasting, IEEE Trans. Power Systems (1987), 785-791.

  23. Hara, K., Kimurs, M., and Honda, N.: A method for planning economic unit commitment and maintenance of thermal power systems, IEEE Trans. Power Apparatus Systems 85(5) (1966), 427-436.

    Google Scholar 

  24. Haykin, S.: Neural Networks: A Comprehensive Foundation, MacMillan, New York, 1994.

    Google Scholar 

  25. Heider, H. and Drabe, T.: A cascaded genetic algorithm for improving fuzzy-system-design, Internat. J. Approx. Reasoning 17 (1997), 351-368.

    Google Scholar 

  26. Hirota, K.: Industrial Applications of Fuzzy Technology, Springer, Berlin/Tokyo, 1993.

    Google Scholar 

  27. Ho, K.-L., Hsu, Y.-Y., Chen, C.-F., and Lee, T.-L.: Short term load forecasting of Taiwan power system using a knowledge-based expert system, IEEE Power Engrg. Rev. (November 1990).

  28. Ho, K. L., Hsu, Y. Y., Chen, C.-F., Lee, T.-L., Liang, C. C., Lai, T. S., and Chen, K. K.: Short term load forecasting of Taiwan power system using a knowledge-based expert system, IEEE Trans. Power Systems 5(4) (1990), 1214-1221.

    Google Scholar 

  29. Ho, K.-L., Hsu, Y.-Y., and Yang, C.-C.: Short term load forecasting using a multi layer neural network with an adaptive learning algorithm, IEEE Trans. Power Systems 7(1) (1992), 141-149.

    Google Scholar 

  30. Holland, J. H.: Adaptation in Natural and Artificial Systems, The Univ. of Michigan Press, Michigan, 1975.

    Google Scholar 

  31. Hripsak, G.: Problem solving using neural networks, M.D. Computing 5(3), 25-37.

  32. Huang, Y.-P. and Huang, C.-H.: Real-valued genetic algorithms for fuzzy gray prediction system, Fuzzy Sets Systems 87 (1997), 265-276.

    Google Scholar 

  33. Iokibe, T., Fujimoto, Y., Kanke, M., and Suzuki, S.: Short-term prediction of chaotic time series by local fuzzy reconstruction method, J. Intell. Fuzzy Systems 5 (1997), 3-21.

    Google Scholar 

  34. Iokibe, T., Kanke, M., Fujimoto, Y., and Suzuki, S.: Short-term prediction on chaotic time series by local fuzzy reconstruction method, in: Proc. of the 3rd Internat. Conf. on Fuzzy Logic, Neural Nets and Soft Computing, Iizuka, Japan, 1994, pp. 491-492.

  35. Iokibe, T. and Mochizuki, N.: Short-term prediction based on fuzzy logic and chaos, in: Proc. of FAN Symp. 94, Tsukuba, Japan, 1994, pp. 77-82.

  36. Ishibuchi, H. and Nakashima, T.: Improving the performance of fuzzy classifier systems for pattern classification problems with continuous attribute, IEEE Trans. Industr. Electronics 46(6) (1999), 1057-1068.

    Google Scholar 

  37. Jagielska, I., Matthews, C., and Whitfort, T.: An investigation into the application of neural networks, fuzzy logic, genetic algorithms, and rough sets to automated knowledge acquisition for classification problems, Neurocomputing 24 (1999), 37-54.

    Google Scholar 

  38. Jimenez, J., Moreno, J., and Ruggeri, G.: Forecasting on chaotic time series: A local optimal linear reconstruction method, Phys. Rev. A 45 (1992), 3553-3558.

    Google Scholar 

  39. Kadirkamanathan, V.: Bayesian inference for basis function selection in nonlinear system identification using genetic algorithms, in: J. Skilling and S. Sibisi (eds), Maximum Entropy and Bayesian Methods, Kluwer, Boston/Dordrecht, 1995.

    Google Scholar 

  40. Katayama, R., Kajittani, Y., Kuwate, K., and Nishida, Y.: Self generating radial basis function as neuro-fuzzy model and its applications to nonlinear prediction of a chaotic time series, in: Proc. of the 2nd IEEE Internat. Conf. on Fuzzy Systems, Vol. 1, San Francisco, 1993, pp. 407-414.

    Google Scholar 

  41. Kengskool, K., Gross, M., and Martinez, R. M.: Forecasting techniques advisory system, Internat. J. Appl. Engrg. Education 6(2) (1990), 171-175.

    Google Scholar 

  42. Khotanzad, A., Abaye, A., and Maratukulam, D.: Forecasting power system peak loads by an adaptive neural network, in: C. H. Dagli et al. (eds), Intelligent Engineering Systems Through Artificial Neural Networks, Vol. 3, ASME Press, New York, 1993, pp. 891-896.

    Google Scholar 

  43. Khotanzad, A., Afkhami-Rohani, R., Lu, T.-L., Abaye, A., Davis, M., and Maratukulam, D. J.: ANNSTLF-A neural-network-based electric load forecasting system, IEEE Trans. Neural Networks 8(4) (1997), 835-846.

    Google Scholar 

  44. Khotanzad, A., Davis, M. H., Abaye, A., and Maratukulam, D. J.: An artificial neural-network hourly temperature forecaster with applications in load forecasting, IEEE Trans. Power Systems 11(3) (1996), 870-876.

    Google Scholar 

  45. Khotanzad, A., Hwang, R. C., Abaye, A., and Maratukulam, D.: An adaptive modular artificial neural network hourly load forecaster and its implementation at electric utilities, IEEE Trans. Power Systems 10(4) (1995) 1716-1722.

    Google Scholar 

  46. Kosko, B.: Neural Networks and Fuzzy Systems: A Dynamical Systems Approach to Machine Intelligence, Prentice-Hall, Englewood Cliffs, NJ, 1991.

    Google Scholar 

  47. Kosko, B.: Fuzzy systems as universal approximators, IEEE Trans. Comput. 43(11) (1994), 1329-1333.

    Google Scholar 

  48. Kosko, B.: Additive fuzzy systems: From function approximation to learning, in: C. H. Chen (ed.), Fuzzy Logic and Neural Network Handbook, McGraw-Hill, New York, 1996, pp. 9.1-9.22.

    Google Scholar 

  49. Lambert-Torres, G., Traore, C. O., Lagace, P. J., and Mukhedkar, D.: A knowledge engineering tool for load forecasting, in: IEEE Symp. on Circuits and Systems, Calgary, Canada, 1990, pp. 144-147.

  50. Lee, K. Y., Cha, T., and Park, J. H.: Short term load forecasting using an artificial neural network, IEEE Trans. Power Systems 7(1) (1992), 124-132.

    Google Scholar 

  51. Lee, M.-R.: Generating fuzzy rules by genetic method and its application, Internat. J. Artificial Intell. Tools 7(4) (1998), 399-413.

    Google Scholar 

  52. Lekova, A., Mikhailov, L., Boyadjiev, D., and Nabout, A.: Redundant fuzzy rules exclusion by genetic algorithms, Fuzzy Sets Systems 100 (1998), 235-243.

    Google Scholar 

  53. Lewis, C. D.: Forecasting in Operations Management and Practice, Philip Allan, Oxford, 1981.

    Google Scholar 

  54. Lian, S. T., Marzuki, K., and Rubiyah, Y.: Tuning of a neurofuzzy controller by genetic algorithms with an application to a coupled-tank liquid-level control system, Engrg. Appl. Artificial Intell. 11 (1998), 517-529.

    Google Scholar 

  55. Lin, Y. and Cuningham III, G. A.: A new approach to fuzzy-neural system modeling, IEEE Trans. Fuzzy Systems 1(1) (1993), 7-31.

    Google Scholar 

  56. Liu, G. P. and Kadirkamanathan, V.: Multiobjective criteria for neural network structure selection and identification of nonlinear systems using genetic algorithms, IEE Proc. Control Theory Appl. 146(5) (1999), 373-382.

    Google Scholar 

  57. Ljung, L. and Soderstrom, T.: Theory and Practice of Recursive Identification, MIT Press, Cambridge, MA, 1983.

    Google Scholar 

  58. Lonergan, T. and Ringwood, J. V.: Linguistic modeling of short-timescale electricity consumption using fuzzy modeling techniques, in: Proc. of Irish DSP and Control (ISPCC'97), Belfast, June 1995.

  59. Lorenz, E.: Deterministic nonperiodic flow, J. Atom. Sci. 20 (1963), 130-141.

    Google Scholar 

  60. Lu, C. N., Wu, N. T., and Vemuri, S.: Neural network-based short term load forecasting, IEEE Trans. Power Systems 8(1) (1993), 336-342.

    Google Scholar 

  61. Mastorokostas, P. A., Theocharis, J. B., Kiartzis, S. J., and Bakirtzis, A. G.: A hybrid fuzzy modeling method for short-term load forecasting, Math. Comput. Simulation 51(3/4) (2000), 221-232.

    Google Scholar 

  62. Matsushita, S., Furuhashi, T., Tsutsui, H., and Uchikawa, Y.: Efficient search for fuzzy models using genetic algorithm, J. Inform. Sci. 110 (1998), 41-50.

    Google Scholar 

  63. May, R.: Stability and Complexity in Model Ecosystems, Princeton Univ. Press, Princeton, 1973.

    Google Scholar 

  64. Medsker, L. R.: Hybrid Neural Networks and Expert Systems, Kluwer, Boston/Dordrecht, 1994.

    Google Scholar 

  65. Mees, A.: Dynamical systems and tessellations: Detecting determinism in data, Internat. J. Bifurcation Chaos 1 (1991), 777-794.

    Google Scholar 

  66. Moghram, I. and Rahman, S.: Analysis and evaluation of five short-term load forecasting methods, IEEE Trans. Power Systems 4 (1989), 1484-1491.

    Google Scholar 

  67. Montgomery, D. C. and Johnson, L. A.: Forecasting and Time Series Analysis, McGraw-Hill, New York, 1976.

    Google Scholar 

  68. Mori, H. and Kobayashi, H.: Optimal fuzzy inference for short-term load forecasting, IEEE Trans. Power Systems 11 (1996), 390-396.

    Google Scholar 

  69. Mori, H., Uematsu, H., Tsuzuki, S., Sakurai, T., Kojima, Y., and Suzuki, K.: Identification of harmonic loads in power systems using an artificial neural network, in: Proc. of the 2nd Symp. on Expert Systems Applications to Power Systems, July 1989, pp. 371-377.

  70. Pang, C. K., Sheble, G. B. and Al Buyeh, F.: Evaluation of dynamic programming based methods and multiple area representation for thermal unit commitments, IEEE Trans. Power Apparatus Systems 100(3) (1981), 1212-1218.

    Google Scholar 

  71. Pang, T. M., Hubele, N. F., and Karady, G. G.: Advancement in the application of neural networks for short term load forecasting, IEEE Trans. Power Systems 8(1) (1992), 1195-1202.

    Google Scholar 

  72. Papalexopoulos, A. D., Hao, S., and Peng, T. M.: An implementation of a neural network based load forecasting model for the EMS, in: Proc. of 1994 IEEE PES Winter Meeting, Paper No. 94 WM 209-7 PWRS, February 1994.

  73. Papalexopoulos, A. D. and Hesterberg, T. C.: A regression-based approach to short-term system load forecasting, IEEE Trans. Power Systems 5(4) (1990), 1535-1544.

    Google Scholar 

  74. Park, D. C., El-Sharkawai, M. A., Marks II, R. J., Atlas, L. E., and Damborg, M. J.: Electric load forecasting using an artificial neural network, IEEE Trans. Power Systems 6(2) (1991), 442-449.

    Google Scholar 

  75. Park, D., Kandel, A., and Langholz, G.: Genetic-based new fuzzy reasoning models with application to fuzzy control, IEEE Trans. Systems Man Cybernet. 24(1) (1994), 39-47.

    Google Scholar 

  76. Perneel, C., Themlin, J., Renders, J., and Acheroy, M.: Optimization of fuzzy expert systems using genetic algorithms and neural networks, IEEE Trans. Fuzzy Systems 3(3) (1993), 1330-1339.

    Google Scholar 

  77. Rahman, S. and Bhatnagar, B.: An expert system based algorithm for short-term load forecasting, IEEE Trans. Power Systems 3(2) (1988).

  78. Rahman, S. and Hazin, O.: Generalized knowledge-based short-term load-forecasting technique, IEEE Trans. Power Systems 8(2) (1993), 508-514.

    Google Scholar 

  79. Rahman, S. and Shrestha, G.: A priority vector based technique for load forecasting, IEEE Trans. PWRS 6 (1991), 1459-1465.

    Google Scholar 

  80. Raptis, S. N. and Tzafestas, S. G.: Genetic evolution of neural networks using subpopulation schemes, in: Prof. of SOFTCOM '98: IMACS/IFAC Internat. Symp. on Soft Computing in Engineering Applications, Athens, June 1998.

  81. Saaty, T. L.: The Analytic Hierarchy Process, McGraw-Hill, New York, 1980.

    Google Scholar 

  82. Schaffer, J. D., Caruana, R. A., and Eshelman, L. J.: Using genetic search to exploit the emergent behavior of neural networks, Phys. D. 42(1-3) (1990), 244-248.

    Google Scholar 

  83. Siarry, P. and Guely, F.: A genetic algorithm for optimizing Takagi-Sugeno fuzzy rule bases, Fuzzy Sets Systems 99 (1998), 37-47.

    Google Scholar 

  84. Simon, F.: Genetic-neuro-fuzzy systems: A promising fusion, in: Proc. of the 4th IEEE Conf. on Fuzzy Systems 1 (1995), 259-266.

    Google Scholar 

  85. Song, Y.-H., Johns, A., and Aggarwal, R.: Computational Intelligence Applications to Power Systems, Science Press and Kluwer, Dordrecht/Boston, 1996.

    Google Scholar 

  86. Srinivasan, D., Chang, C. S., and Liew, A. C.: Demand forecasting using fuzzy neural computation, with emphasis on weekend and public holiday forecasting, IEEE Trans. Power Systems 10(4) (1995), 1897-1903.

    Google Scholar 

  87. Stamou, G. B. and Tzafestas, S. G.: Fuzzy relation equations and fuzzy inference systems: An inside approach, IEEE Trans. Systems Man and Cybernet. B 29(6) (1999), 694-702.

    Google Scholar 

  88. Stamou, G. B. and Tzafestas, S. G.: Neural fuzzy relational systems with a new learning algorithm, Math. Comput. Simulation 51(3/4) (2000), 301-314.

    Google Scholar 

  89. Sugeno, M. and Kang, G. T.: Structure identification of a fuzzy model, Fuzzy Sets Systems 28 (1988), 15-33.

    Google Scholar 

  90. Sugeno, M. and Tanaka, K.: Successive identification of a fuzzy model and its applications to prediction of a complex system, Fuzzy Sets Systems 42 (1991), 315-334.

    Google Scholar 

  91. Sugeno, M. and Yasukawa, T.; A fuzzy-logic-based approach to qualitative modeling, IEEE Trans. Fuzzy Systems 1(1) (1993), 7-31.

    Google Scholar 

  92. Takens, F.: Detecting strange attractors in turbulence, in: D. Raag and L. Young (eds), Proc. of Dynam. Systems and Turbulence Conf., Warwick, Springer, Berlin, 1980, pp. 366-381.

    Google Scholar 

  93. Terano, T., Asai, K., and Sugeno, M.: Fuzzy Systems Theory and its Applications, Academic Press, Boston, MA, 1992.

    Google Scholar 

  94. Tsoukalas, L.: Neurofuzzy approaches to anticipation: A new paradigm for intelligent systems, IEEE Trans. Systems Man Cybernet. B 28(4) (1998), 573-582.

    Google Scholar 

  95. Tzafestas, E. S., Nikolaidou, A., and Tzafestas, S. G.: Performance evaluation and dynamic node generation criteria for “Principal Component Analysis” neural networks, Math. Comput. Simulation 51(34) (2000), 145-156.

    Google Scholar 

  96. Tzafestas, E. S. and Tzafestas, S. G.: Intelligent forecasting and fault diagnosis using neural estimators, in: S. G. Tzafestas (ed.), Computational Intelligence in Systems and Control Design and Applications, Kluwer, Dordrecht/Boston, 1999, pp. 3-16.

    Google Scholar 

  97. Tzafestas, S. G. (ed.): Knowledge-Based System Diagnosis, Supervision and Control, Plenum Press, New York/London, 1989.

    Google Scholar 

  98. Tzafestas, S. G. (ed.): Knowledge-Based Systems: Advanced Concepts, Techniques and Applications, World Scientific, Singapore/London, 1997.

    Google Scholar 

  99. Tzafestas, S. G.: Soft Computing in Systems and Control Technology, World Scientific, Singapore/London, 1997.

    Google Scholar 

  100. Tzafestas, S. G., Dalianis, P. J., and Anthopoulos, J.: On the overtraining phenomenon of back propagation networks, Math. Comput. Simulation 40(5/6) (1996), 507-521.

    Google Scholar 

  101. Tzafestas, S. G. and Dalianis, P. J.: A real-time expert data filtering system for industrial plant environments, Math. Comput. Simulation 41(5/6) (1996), 473-484.

    Google Scholar 

  102. Tzafestas, S. G., Magoulas, S., and Triantafyllakis, A.: An interactive advisory forecasting system, Found. Computing Decision Sci., 17(4) (1992), 235-255.

    Google Scholar 

  103. Tzafestas, S. G. and Mekras, N.: Industrial forecasting using knowledge-based techniques and artificial neural networks, in: S. G. Tzafestas (ed.), Advances in Manufacturing: Decision, Control and Information Technology, Springer, Berlin/London, 1999, pp. 171-180.

    Google Scholar 

  104. Tzafestas, S. G. and Raptis, S. N.: Genetic design of fuzzy systems based on a novel representation scheme, in: Proc. of CESA '98: IMACS/IEEE Multi-Conference on Computer Engineering Systems and Applications, Hammamet, Tunisia, April 1998.

  105. Tzafestas, S. G. and Raptis, S.: A combination of classical techniques on a SOM-type neural network platform, in: Proc. of EUSIPCO '98: IX European Signal Processing Conf., Island of Rhodes, Greece, September 1998.

  106. Tzafestas, S. G., Raptis, S., and Stamou, G.: A flexible neurofuzzy cell structure for general fuzzy inference, Math. Comput. Simulation 41(3/4) (1996), 219-233.

    Google Scholar 

  107. Tzafestas, S. G., Saltouros, M.-P., and Markaki, M.: A A tutorial overview of genetic algorithms and their applications, in: Soft Computing in Systems and Control Technology, World Scientific, Singapore/London, 1999, pp. 223-300.

    Google Scholar 

  108. Tzafestas, S. G., Tzafestas, E. S., and Maragos, P.: Intelligent forecasting: Fuzzy/neurofuzzy methodologies with case studies, in: Proc. of the 3rd European Intelligent Forecasting Systems Workshop, Santorini, Greece, June 2000, pp. 104-113.

  109. Tzafestas, S. G. and Venetsanopoulos, A.: Fuzzy Reasoning in Information, Decision and Control Systems, Kluwer, Dordrecht/Boston, 1994.

    Google Scholar 

  110. Tzafestas, S. G. and Zikidis, K. C.: An on-line learning, neuro-fuzzy architecture, based on functional reasoning and fuzzy ARTMAP, in: Proc. ICSC Symp. on Fuzzy Logic and Applications (ISFL'97), Zurich, Switzerland, 1997.

  111. Tzafestas, S. G. and Zikidis, K. C.: An on-line self-constructing fuzzy modeling architecture based on neural and fuzzy concepts and techniques, in:Soft Computing in Systems and Control Technology, World Scientific, Singapore, 1999, pp. 119-168.

    Google Scholar 

  112. Vemuri, S., Huang, L., and Nelson, D. J.: On line algorithms for forecasting hourly loads of an electric utility, IEEE Trans. Power Appl. Systems 100 (1981), 3775-3784.

    Google Scholar 

  113. Wang, L. and Yen, J.: Extracting fuzzy rules for system modeling using a hybrid of genetic algorithms and Kalman filter, Fuzzy Sets Systems 101 (1999), 353-362.

    Google Scholar 

  114. Watkins, P. R. and Eliot, L. B.: Expert Systems in Business and Finance: Issues and Applications, Willey, Chichester/New York, 1993.

    Google Scholar 

  115. Weigend, A. S., Huberman, B. A., and Rumelhart, D. E.: Predicting the future: A connectionist approach, Internat. J. Neural Systems 1(3) (1990).

  116. Wong, K. P.: Expert systems in engineering applications, in: S. G. Tsafestas (ed.), Application of AI and Expert Systems in Power Engineering, Springer, Berlin, 1993, Chapter 7.

    Google Scholar 

  117. Wu, C.-J. and Liu, C.-Y.: A genetic approach for simultaneous design of membership functions and fuzzy control rules, J. Intell. Robotic Systems 28(3) (2000), 195-211.

    Google Scholar 

  118. Yager, R. and Zadeh, L. A.: An Introduction to Fuzzy Logic Applications in Intelligent Systems, Kluwer, Boston/Dordrecht, 1992.

    Google Scholar 

  119. Carpinteiro, O. A. S. and Alves Da Silva, A. P.: A hierarchical self-organizing map model in short-term load forecasting, J. Intell. Robotic Systems 31(1-3) (2001), (this issue) 105-113.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tzafestas, S., Tzafestas, E. Computational Intelligence Techniques for Short-Term Electric Load Forecasting. Journal of Intelligent and Robotic Systems 31, 7–68 (2001). https://doi.org/10.1023/A:1012402930055

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012402930055

Navigation