Skip to main content
Log in

Membrane Transport in Hepatic Clearance of Drugs I: Extended Hepatic Clearance Models Incorporating Concentration-Dependent Transport and Elimination Processes

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The objective of the present study was to develop hepatic clearance models which incorporate a unidirectional carrier-mediated uptake and bidirectional diffusional transport processes for drug transport in the sinusoidal membrane of hepatocytes as well as nonlinear intrinsic elimination.

Methods. Two models were derived which view the liver as two separate compartments, i.e., sinusoid and hepatocyte. Model I assumes the instantaneous complete mixing of drugs within each compartment (similar to that of the 'well-stirred' model), while model II assumes that the drug concentrations in both compartments decrease progressively in the direction of the hepatic blood flow path (similar to that of the 'parallel-tube' model). Computer simulations were performed using a range of steady-state infusion rates for a substrate, while varying theV max (capacity) and K m (Michaelis-Menten constant) for the carrier-mediated uptake process, the diffusional clearance, the V max and K m for the intrinsic elimination process, blood flow and protein binding.

Results. Simulations in which V max and K m for the sinusoidal membrane transporter and the diffusional clearance were varied, demonstrated that these membrane transport processes could affect the clearance of drugs to a significant extent in both models. The estimates for clearance of substrates with the same pharmacokinetic parameters are always lower in model I than in model II, although the quantitative differences in parameter estimates between models varied, depending on the steady state infusion rates.

Conclusions. These more general hepatic clearance models will be most useful for describing the hepatic clearance of hydrophilic compounds, such as organic anions or cations, which exhibit facilitated uptake and limited membrane diffusion in hepatocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. Iida, T. Mizuma, N. Sakuma, M. Hayashi, and S. Awazu. Drug Metab. Disp. 17:341–344 (1989).

    Google Scholar 

  2. H. M. Solomon and L. S. Schanker. Biochem. Pharmacol. 12:621–626 (1963).

    PubMed  Google Scholar 

  3. W. P. Geng, A. J. Schwab, C. A. Goresky, and K. S. Pang. Hepatology 22:1188–1207, 1995.

    PubMed  Google Scholar 

  4. M. Yamazaki, S. Akiyama, R. Nishigaki, and Y. Sugiyama. Pharm. Res. 13:1559–1564, 1996.

    PubMed  Google Scholar 

  5. R. P. J. Oude Elferink, D. K. F. Meijer, F. Kuipers, P. L. M. Jansen, A. K. Groen, and G. M. M. Groothuis. Biochim. Biophy. Acta 1241:215–268 (1995).

    Google Scholar 

  6. M. Vore. In F. C. Kauffman (ed), Conjugation-Deconjugation Reactions in Drug Metabolism and Toxicity, Springer-Verlag, New York, 1994, pp. 311–338.

    Google Scholar 

  7. L. Bass, S. Keiding, K. Winkler, and N. Tygstrup. J. Theor. Biol. 61:393–409 (1976).

    PubMed  Google Scholar 

  8. M. Yokota, T. Iga, Y. Sugiyama, A. Suyama, S. Awazu, and M. Hanano. J. Pharm. Dyn. 4:287–293, (1981).

    Google Scholar 

  9. B. A. Saville, M. R. Gray, and Y. K. Tam. Drug Metab. Rev. 24:49–88 (1992).

    PubMed  Google Scholar 

  10. R. Kroker, M. S. Anwer, and D. Hegner. Naunyn-Schmiedebergs Arch. Exp. Pathol. Pharmakol. 303:287–293 (1978).

    Google Scholar 

  11. I. A. M. deLannoy and K. S. Pang. Drug. Metab. Dispos. 14:513–520 (1986).

    PubMed  Google Scholar 

  12. S. Miyauchi, Y. Sugiyama, Y. Sawada, K. Morita, T. Iga, and N. Hanano. J. Pharmacokin. Biopharm. 15:25–38 (1987).

    Google Scholar 

  13. S. Miyauchi, Y. Sugiyama, T. Iga, and M. Hanano. J. Pharm. Sci. 77:688–692 (1988).

    PubMed  Google Scholar 

  14. E. L. Forker and B. A. Luxon. Am. J. Physiol. 244:G573–G577 (1983).

    PubMed  Google Scholar 

  15. M. S. Roberts and M. Rowland. J. Pharmacokin. Biopharm. 14:227–260 (1986).

    Google Scholar 

  16. X. Deroubaix, T. Coche, E. Depiereux, and E. Feytmans. Am. J. Physiol. 260:G189–G196 (1991).

    PubMed  Google Scholar 

  17. C. V. Greenway and F. J. Burczynski. Can. J. Physiol. Pharmacol. 65:1193–1199 (1987).

    PubMed  Google Scholar 

  18. W. P. Geng, K. Poon, and K. S. Pang. J. Pharmacokin. Biopharm. 23:347–378 (1995).

    Google Scholar 

  19. R. B. Hornbeck. Numerical Methods, Quantum Publishers, Inc., New York, 1975, pp. 185–226.

    Google Scholar 

  20. X. Deroubaix, T. Coche, Depiereux, and E. Feytmans. Am. J. Physiol. 257:G210–G220 (1989).

    PubMed  Google Scholar 

  21. S. Miyauchi, Y. Sawada, T. Iga, M. Hanano, and Y. Sugiyama. Biol. Pharm. Bull. 16:1019–1024, 1993.

    PubMed  Google Scholar 

  22. M. E. Morris and Y. Li. Pharm. Res. 8:S-322, 1991.

    Article  Google Scholar 

  23. S. Miyauchi, Y. Sugiyama, T. Iga, and M. Hanano. J. Pharm. Sci. 77:688–692, 1988.

    PubMed  Google Scholar 

  24. N. Muranushi, S. Miyauchi, H. Suzuki, Y. Sugiyama, M. Hanano, H. Kinoshita, T. Oguma, and H. Yamada. Biopharm. Drug Dispos. 14:279–290 (1993).

    PubMed  Google Scholar 

  25. L. Gariepy, D. Fenyves, I. Kassissia, and J.-P. Villenueve. Hepatology 18:823–831 (1993).

    PubMed  Google Scholar 

  26. R. Hori, K. Okumura, M. Yasuhara, and H. Katayama. Biochem. Pharmacol. 34:2679–2683 (1985).

    Article  PubMed  Google Scholar 

  27. J. C. Fernandez-Checa, M. Ookhtens, and N. Kaplowitz. J. Biol. Chem. 268(15):10836–10841 (1993).

    PubMed  Google Scholar 

  28. Y. Kwon and M. E. Morris. Pharm. Res. 12:1109–1114 (1995).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marilyn E. Morris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwon, Y., Morris, M.E. Membrane Transport in Hepatic Clearance of Drugs I: Extended Hepatic Clearance Models Incorporating Concentration-Dependent Transport and Elimination Processes. Pharm Res 14, 774–779 (1997). https://doi.org/10.1023/A:1012106623696

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012106623696

Navigation