Skip to main content
Log in

Therapeutic Targets for Hypoxia-Elicited Pathways

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Diminished oxygen supply to tissues (hypoxia) can stem from many sources, and is a contributing factor to diverse disease processes. Cell and tissue responses to hypoxia are diverse and include dramatic changes in metabolic demand, regulation of cellular gene products, and release of lipid and protein mediators. Surprisingly little attention has been paid to targeted development of therapeutics for hypoxia-related disease processes. This review will focus on recent advances in cellular and molecular biology pertaining to the hypoxia response, and will discuss paradigms used to study hypoxia and the potential targets for therapeutic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. H. F. Bunn and R. O. Poyton. Oxygen sensing and molecular adaptation to hypoxia. Physiol. Rev. 76:839–885 (1996).

    Google Scholar 

  2. M. Gassmann and R. H. Wenger. HIF-1, a mediator of the molecular response to hypoxia. News Physiol. Sci. 12:214–218 (1997).

    Google Scholar 

  3. P. J. Ratcliffe, J. F. O'Rourke, P. H. Maxwell, and C. W. Pugh. Oxygen sensing, hypoxia-inducible factor-1 and the regulation of mammalian gene expression. J. Exp. Biol. 201:1153–1162 (1998).

    Google Scholar 

  4. G. L. Semenza. Hypoxia-inducible factor 1: master regulator of O2 homeostasis. Curr. Opin. Genet. Dev. 8:588–94 (1998).

    Google Scholar 

  5. P. Saikumar, Z. Dong, J. M. Weinberg, and M. A. Venkatachalam. Mechanisms of cell death in hypoxia/reoxygenation injury. Oncogene 17:3341–9 (1998).

    Google Scholar 

  6. G. L. Semenza. Regulation of erythropoietin production. New insights into molecular mechanisms of oxygen homeostasis. Hematol. Oncol. Clin. North Am. 8:863–84 (1994).

    Google Scholar 

  7. H. F. Bunn, L. J. Gu, E. Huang, J. W. Park, and H. Zhu. Erythropoietin: a model system for studying oxygen-dependent gene regulation. J. Exp. Biol. 201:1197–1201 (1998).

    Google Scholar 

  8. G. L. Semenza and G. L. Wang. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Molec. Cell. Biol. 12:5447–5454 (1992).

    Google Scholar 

  9. L. E. Huang, J. Gu, M. Schau, and H. F. Bunn. Regulation of hypoxia-inducible factor 1α is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc. Nat. Acad. Sci. (USA). 95:7987–7992 (1998).

    Google Scholar 

  10. G. L. Wang, B. H. Jiang, E. A. Rue, and G. L. Semenza. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular oxygen tension. Proc. Natl. Acad. Sci. USA 92:5510–5514 (1995).

    Google Scholar 

  11. G. L. Wang and G. L. Semenza. Purification and characterization of hypoxia-inducible factor 1. J. Biol. Chem. 270:1230–1237 (1995).

    Google Scholar 

  12. P. J. Kallio, W. J. Wilson, S. O'Brien, Y. Makino, and L. Poellinger. Regulation of the hypoxia-inducible transcription factor 1α by the ubiquitin-proteasome pathway. J. Biol. Chem. 274:6519–6525, (1999).

    Google Scholar 

  13. G. L. Wang and G. L. Semenza. General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc. Nat. Acad. Sci. (USA). 90:4304–4308 (1993).

    Google Scholar 

  14. P. H. Maxwell, C. W. Pugh, and P. J. Ratcliffe. Inducible operation of the erythropoietin 3′ enhancer in multiple cell lines: evidence for a widespread oxygen-sensing mechanism. Proc. Natl. Acad. Sci. USA 90:2423–2427 (1993).

    Google Scholar 

  15. M. V. Blagosklonny, W. G. An, L. Y. Romanova, J. Trepel, T. Fojo, and L. Neckers. p53 inhibits hypoxia-inducible factor-stimulated transcription. J. Biol. Chem. 273:11995–11998 (1998).

    Google Scholar 

  16. Y. Liu, H. Christou, T. Morita, E. Laughner, G. L. Semenza, and S. Kourembanas. Carbon monoxide and nitric oxide supress the hypoxic induction of vascular endothelial growth factor gene via the 5′ enhancer. J. Biol. Chem. 273:15257–15262 (1998).

    Google Scholar 

  17. K. Sogawa, K. Numayama-Tsuruta, M. Ema, M. Abe, H. Abe, and Y. Fujii-Kuriyama. Inhibition of hypoxia-inducible factor-lactivity by nitric oxide doners in hypoxia. Proc. Natl. Acad. Sci. USA 95:7368–7373 (1998).

    Google Scholar 

  18. P. Vaupel. Oxygen transport in tumors: characteristics and clinical implications. Adv. Exp. Med. Biol. 388:341–351 (1996).

    Google Scholar 

  19. J. F. O'Rourke, G. U. Dachs, J. M. Gleadle, P. H. Maxwell, C. W. Pugh, I. J. Stratford, S. M. Wood, and P. J. Ratcliffe. Hypoxia response elements. Oncol. Res. 9:327–332 (1997).

    Google Scholar 

  20. P. H. Maxwell, G. U. Dachs, J. M. Gleadle, L. G. Nicholls, A. L. Harris, I. J. Stratford, O. Hankinson, C. W. Pugh, and P. J. Ratcliffe. Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc. Natl. Acad. Sci. USA 94:8104–9 (1997).

    Google Scholar 

  21. J. A. Forsythe, B. H. Jiang, N. V. Iyer, F. Agani, S. W. Leung, R. D. Koos, and G. L. Semenza. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol. Cell. Biol. 16:4604–13 (1996).

    Google Scholar 

  22. P. Carmeliet, Y. Dor, J. M. Herbert, D. Fukumura, K. Brusselmans, M. Dewerchin, M. Neeman, F. Bono, R. Abramovitch, P. Maxwell, C. J. Koch, P. Ratcliffe, L. Moons, R. K. Jain, D. Collen, and E. Keshert. Role of HIF-1alpha in hypoxia-mediated apoptosis, cell prolifcration and tumor angiogenesis. Nature 394:485–490 (1998).

    Google Scholar 

  23. K. Guillemin and M. Krasnow. The hypoxic response: huffing and HIFing. Cell 89:9–12 (1997).

    Google Scholar 

  24. C. J. Gulledge and M. W. Dewhirst. Tumor oxygenation: a matter of supply and demand. Anticancer Res. 16:741–749 (1996).

    Google Scholar 

  25. P. J. Barnes and M. Karin. Nuclear factor-κB-A pivitol transcription factor in chronic inflammatory disease. N. Engl. J. Med. 336:1066–1071 (1997).

    Google Scholar 

  26. T. Collins, M. A. Read, A. S. Neish, M. Z. Whitley, D. Thanos, and T. Maniatis. Transcriptional regulation of endothelial cell adhesion molecules: NK-κB and cytokinc-inducible enhancers. FASEB J. 9:899–909 (1995).

    Google Scholar 

  27. A. Pietersma, N. DeJong, J. F. Koster, and W. Sluiter. Effect of hypoxia on adherence of granulocytes to endothelial cells in vitro. Am. J. Physiol. 267:H874–H879 (1994).

    Google Scholar 

  28. N. Yoshida, D. N. Granger, D. C. Anderson, R. Rothlein, C. Lane, and P. R. Kvietys. Anoxia/reoxygenation-induced neutrophil adherence to cultured endothelial cells. Am. J. Physiol. 265:H699–H703 (1992).

    Google Scholar 

  29. R. Shreeniwas, S. Koga, M. Karakurum, D. Pinsky, E. Kaiser, J. Brett, B. A. Wolitzky, C. Norton, J. Plocinski, W. Benjamin, D. K. Burns, A. Goldstein, and D. Stern. Hypoxia-mediated induction of endothelial cell interleukin-1-α: An autocrine mechanism promoting expresion of leukocyte adhesion molecules on the vessel surface. J. Clin. Invest. 90:2333–2339 (1992).

    Google Scholar 

  30. G. Zünd, S. Uezono, G. L. Stahl, A. L. Dzus, F. X. McGowan, P. R. Hickey, and S. P. Colgan. Hypoxia enhances endotoxin-stimulated induction of functional intercellular adhesion molecule-1 (ICAM-1). Am. J. Physiol. 273:C1571–C1580 (1997).

    Google Scholar 

  31. G. Zünd, D. P. Nelson, E. J. Neufeld, A. L. Dzus, J. Bischoff, J. E. Mayer, and S. P. Colgan. Hypoxia enhances stimulus-dependent induction of E-selectin on aortic endothelial cells. Proc. Natl. Acad. Sci. USA 93:7075–7080 (1996).

    Google Scholar 

  32. J. H. James, C. H. Fang, S. J. Schrantz, P. O. Hasselgren, R. J. Paul, and J. E. Fischer. Linkage of aerobic glycolysis to sodium-potassium transport in rat skeletal muscle. Implications for increased lactate production in sepsis. J. Clin. Invest. 98:2388–2397 (1996).

    Google Scholar 

  33. G. Tiao, S. Hobler, J. J. Wand, T. A. Meyer, F. A. Luchette, J. E. Fischer, and P.-O. Hasslegren. Sepsis is associated with increased mRNA's of the ubiquitin-proteasome proteolytic pathway in human skeletal muscle. J. Clin. Invest. 99:163–168 (1997).

    Google Scholar 

  34. M. Montminy. Transcriptional regulation by cyclic AMP. Annu. Rev. Biochem. 66:807–822 (1997).

    Google Scholar 

  35. A. V. Tretyakov and H. W. Farber. Endothelial cell tolerance to hypoxia: Potential role of purine nucleotide phosphates. J. Clin. Invest. 95:738–744 (1995).

    Google Scholar 

  36. S. Ogawa, S. Koga, K. Kuwabara, J. Brett, B. Morrow, S. A. Morris, J.P. Bilezikian, S.C. Silverstein, and D. Stern. Hypoxia-induced increased permeability of endothelial monolayers occurs through lowering of cellular cAMP levels. Am. J. Physiol. 262:C546–C554 (1992).

    Google Scholar 

  37. R. Shreeniwas, S. Ogawa, F. Cozzolino, G. Torcia, N. Braunstein, C. Butura, J. Brett, H. B. Leiberman, M. B. Furie, J. Joseph-Silverstien, and D. Stern. Macrovascular and microvascular endothelium during long-term hypoxia: Alterations in cell growth, monolayer permeability, and cell surface coagulant properties. J. Cell. Physiol. 146:8–17 (1991).

    Google Scholar 

  38. S. Ogawa, R. Shreeniwas, C. Butura, J. Brett, and D. Stern. Modulation of endothelial barrier function by hypoxia: Perturbation of barrier and anticoagulant function, and induction of a novel factor X activator. Adv. Exp. Med. Biol. 281:303–312 (1990).

    Google Scholar 

  39. D. J. Pinsky, M. C. Oz, H. Liao, S. Morris, J. Brett, A. Morales, M. Karakurum, M. M. V. L. Campagne, R. Nowygrod, and D. M. Stern. Restoration of the cAMP second messenger pathway enhances cardiac preservation for transplantation in a heterotopic rat model. J. Clin. Invest. 92:2994–3002 (1993).

    Google Scholar 

  40. C. T. Taylor, S. J. Lisco, C. S. Awtrey, and S. P. Colgan. Hypoxia inhibits cyclic nucleotide-stimulated epithelial ion transport: role for nucleotide cyclases as oxygen sensors. J. Pharmacol. Exp. Ther. 284:568–575 (1998).

    Google Scholar 

  41. G. B. Friedman, C. T. Taylor, C. A. Parkos, and S. P. Colgan. Epithelial permeability induced by neutrophil transmigration is potentiated by hypoxia: role of intracellular cAMP. J. Cell. Physiol. 176:76–84 (1998).

    Google Scholar 

  42. C. T. Taylor, N. Fueki, A. Agah, R. M. Hershberg, and S. P. Colgan. Critical role of cAMP response element binding protein expression in hypoxia-elicited induction of epithelial TNFα. J. Biol. Chem. 274:19447–19450 (1999).

    Google Scholar 

  43. I. Kvietikova, R. H. Wenger, H. H. Marti, and M. Gassmann. The hypoxia-inducible factor-1 DNA recognition site is cAMP responsive. Kid. Int. 51:564–566 (1997).

    Google Scholar 

  44. R. Tazawa, X. M. Xu, K. K. Wu, and L. H. Wang. Characterization of the genomic structure, chromosomal location and promoter of human prostaglandin H synthase-2 gene. Biochem. Biophys. Res. Commun. 203:190–9 (1994).

    Google Scholar 

  45. J. F. Schmedtje, Y. S. Ji, W. L. Liu, R. N. DuBois, and M. S. Runge. Hypoxia induces cyclooxygenase-2 via the NF-kappaB p65 transcription factor in human vascular endothelial cells. J. Biol. Chem. 272:601–608 (1997).

    Google Scholar 

  46. E. D. Blume, C. T. Taylor, P. F. Lennon, G. L. Stahl, and S. P. Colgan. Activated endothelial cells elicit paracrine induction of epithelial chloride secretion: 6-keto-PGF is an epithelial secretagogue. J. Clin. Invest. 102:1161–1172 (1998).

    Google Scholar 

  47. R. Wadgaonkar, K. M. Phelps, Z. Haque, A. J. Williams, E. S. Silverman, and T. Collins. CREB-binding protein is a nuclear integrator of nuclear factor-kappaB and p53 signaling. J. Biol. Chem. 274:1879–82 (1999).

    Google Scholar 

  48. C. T. Taylor, A. L. Dzus, and S. P. Colgan. Autocrine regulation of intestinal epithelial permeability induced by hypoxia: Role for basolateral release of tumor necrosis factor-α (TNF-α). Gastroenterology 114:657–668 (1998).

    Google Scholar 

  49. C. Wahl, S. Liptay, G. Adler, and R. M. Schmid. Sulfasalazine: a potent and specific inhibitor of nuclear factor kappa B. J. Clin. Invest. 101:1163–74 (1998).

    Google Scholar 

  50. E. Kopp and S. Ghosh. Inhibition of NF-κB by sodium salicylate and aspirin. Science 265:956–959 (1994).

    Google Scholar 

  51. D. H. Lee and A. L. Goldberg. Protcasome inhibitors: valuable new tools for cell biologists. Trends Cell. Biol. 8:397–403 (1998).

    Google Scholar 

  52. M. Rolfe, M. I. Chiu, and M. Pagano. The ubiquitin-mediated proteolytic pathway as a therapeutic area. J. Mol. Med. 75:5–17 (1997).

    Google Scholar 

  53. G. Fenteany and S. L. Schreiber. Lactacystin, proteasome function, and cell fate. J. Biol. Chem. 273:8545–8 (1998).

    Google Scholar 

  54. M. S. O'Reilly, T. Bochm, Y. Shing, N. Fukai, G. Vasios, W. S. Lane, E. Flynn, J. R. Birkhead, B. R. Olsen, and J. Folkman. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88:277–285 (1997).

    Google Scholar 

  55. M. S. O'Reilly, L. Holmgren, C. Chen, and J. Folkman. Angiostatin induces and sustains dormancy of human primary tumors in mice. Nat. Med. 2:689–92 (1996).

    Google Scholar 

  56. P. H. Maxwell, M. S. Wiesener, G. W. Chang, S.C. Clifford, E. C. Vaux, M. E. Cockman, C. C. Wykoff, C. W. Pugh, E. R. Maher, and P. J. Ratcliffe. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399:271–5 (1999).

    Google Scholar 

  57. K. H. Plate, G. Breier, H. A. Weich, and W. Risau. Vascular endothelial growth factor is a potential tumor angiogenesis factor in human gliomas in vivo. Nature 359:845–847 (1992).

    Google Scholar 

  58. G. Molema, D. K. Meijer, and L. F. de Leij. Tumor vasculature targeted therapies: getting the players organized. Biochem. Pharmacol. 55:1939–1945. (1998).

    Google Scholar 

  59. I. Zachary. Vascular endothelial growth factor. Int. J. Biochem. Cell. Biol. 30:1169–1174 (1998).

    Google Scholar 

  60. T. Kanai, H. Konno, T. Tanaka, M. Baba, K. Matsumoto, S. Nakamura, A. Yukita, M. Asano, H. Suzuki, and S. Baba. Antitumor and anti-metastatic effects of human-vascular-endothelial-growth-factor-neutralizing antibody on human colon and gastric carcinoma xenotransplanted orthotopically into nude mice. Int. J. Cancer. 77:933–936 (1998).

    Google Scholar 

  61. L. W. Chen, C. M. Hsu, J. S. Wang, J. S. Chen, and S.C. Chen. Specific inhibition of iNOS decreases the intestinal mucosal peroxynitrite level and improves the barrier function after thermal injury. Burns 24:699–705 (1998).

    Google Scholar 

  62. G. J. Southan and C. Szabo. Selective pharmacological inhibition of distinct nitric oxide synthase isoforms. Biochem. Pharmacol. 51:383–394 (1996).

    Google Scholar 

  63. L. L. Thomsen and D. W. Miles. Role of Nitric Oxide in tumor progression: lessons from human tumors. Cancer Metastesis. Rev. 17:107–118 (1998).

    Google Scholar 

  64. R. J. D'Amato, M. S. Loughnan, E. Flynn, and J. Folkman. Thalidomide is an inhibitor of angiogenesis. Proc. Natl. Acad. Sci. USA 91:4082–5 (1994).

    Google Scholar 

  65. L. G. Corral, G. W. Muller, A. L. Moriera, Y. Chen, M. Wu, D. Stirling, and G. Kaplan. Selection of novel analogs of thalidomide with enhanced tumor necrosis factor inhibitory activity. Mol. Med. 2:506–515 (1996).

    Google Scholar 

  66. E. C. Svensson and L. B. Schwartz. Gene therapy for vascular disease. Curr. Opin. Cardiol. 13:369–74 (1998).

    Google Scholar 

  67. J. M. Isner. Vascular endothelial growth factor: gene therapy and therapeutic angiogenesis. Am. J. Cardiol. 82:63S–64S (1998).

    Google Scholar 

  68. D. J. Pinsky, Y. Naka, N. C. Chowdhury, H. Liao, M. C. Oz, R. E. Michler, E. Kubaszewski, T. Malinski, and D. M. Stern. The nitic oxide/cyclic GMP pathway in organ transplantation: critical role in successful lung preservation. Proc. Natl. Aced. Sci. (USA). 91:12086–12090 (1994).

    Google Scholar 

  69. M. C. Oz, D. J. Pinsky, S. Koga, H. Liao, C. C. Marboe, D. Han, R. Kline, V. Jeevanandam, M. Williams, A. Morales, S. Popilskis, R. Nowygrod, D. Stern, E. Rose, and R. Michler. Novel preservation solution permits 24-hour preservation in rat and baboon cardiac transplant models. Circulation 88:291–7 (1993).

    Google Scholar 

  70. C. N. Serhan, J. Z. Haeggstrom, and C. C. Leslie. Lipid mediator networks in cell signaling: update and impact of cytokines. FASEB J. 10:1147–1158 (1996).

    Google Scholar 

  71. C. N. Serhan. Lipoxin biosynthesis and its impact in inflammatory and vascular events. Biochim. et Biophys. Acta. 1212:1–25 (1994).

    Google Scholar 

  72. J. Claria and C. N. Serhan. Aspirin triggers previously undescribed bioactive eicosanoids by human endothelial cell-leukocyte interactions. Proc. Natl. Acad. Sci. (USA). 92:9475–9479 (1995).

    Google Scholar 

  73. C. N. Serhan, J. F. Maddox, N. Petasis, P. A, H. R. Brady, S. P. Colgan, and J. L. Madara. Design of lipoxin A4 stable analogs that block human neutrophil transmigration and adhesion. Biochemistry USA. 34:14609–14615 (1995).

    Google Scholar 

  74. J. Claria, M. H. Lee, and C. N. Serhan. Aspirin-triggered lipoxins (15-epi-LX) are generated by the human lung adenocarcinoma cell line (A549)-neutrophil interactions and are potent inhibitors of cell proliferation. Mol. Med. 2:583–596 (1996).

    Google Scholar 

  75. G. Ricevuti. Host tissue damage by phagocytes. Ann. NY Acad. Sci. 832:426–48 (1997).

    Google Scholar 

  76. C. R. B. Welbourne, G. Goldman, C. R. Valeri, D. Shepro, and H. B. Hechtman. Pathophysiology of ischaemia reperfusion injury: central role of the neutrophil. Br. J. Surg. 78:651–655 (1991).

    Google Scholar 

  77. C. A. Parkos. Molecular events in neutrophil transepithelial migration. BioEssays 19:865–873 (1997).

    Google Scholar 

  78. T. A. Springer. Adhesion receptors of the immune system. Nature 346:425–430 (1990).

    Google Scholar 

  79. M. Karakurum, R. Shreeniwas, J. Chen, D. Pinsky, S.-D. Yan, M. Anderson, K. Sunouchi, J. Major, T. Hamilton, K. Kuwabara, A. Rot, R. Nowygrod, and D. Stern. Hypoxic induction of interleukin-8 gene expression in human endothelial cells. J. Clin. Invest. 93:1564–1570 (1994).

    Google Scholar 

  80. S. P. Colgan, A. L. Dzus, and C. A. Parkos. Epithelial exposure to hypoxia modulates neutrophil transepithelial migration. J. Exp. Med. 184:1003–1015 (1996).

    Google Scholar 

  81. S. P. Colgan, C. N. Serhan, C. A. Parkos, C. Delp-Archer, and J. L. Madara. Lipoxin A4 modulates transmigration of human neutrophils across intestinal epithelial monolayers. J. Clin. Invest. 92:75–82 (1993).

    Google Scholar 

  82. A. T. Gewirtz, B. A. McCormick, A. S. Neisch, N. A. Petasis, K. Gronert, C. N. Serhan, and J. L. Madara. Pathogen-induced chemokine secretion from model intestinal epithelium is inhibited by lipoxin A4 analogs. J. Clin. Invest. 101:1860–1869 (1998).

    Google Scholar 

  83. J. F. Maddox, S. P. Colgan, C. Clish, N. A. Petasis, V. V. Fokin, and C. N. Serhan. Lipoxin B4 regulates monocyte and neutrophil adherence and motility: design of stable lipoxin B4 analogs with increased biologic activity. FASEB J. 12:487–494 (1998).

    Google Scholar 

  84. J. Raud, U. Palmertz, S.-E. Dahlen, and P. Hedqvist. Lipoxins inhibit microvascular inflammatory actions of leukotriene B4. In: Cell-Cell Interactions in the Release of Inflammatory Mediators, edited by P. Y.-K. Wong and C. N. Serhan. New York: Plenum Press, 185–192, 1991.

    Google Scholar 

  85. S. E. Dahlen, L. Franzen, J. Raud, C. N. Serhan, P. Westlund, E. Wikstrom, T. Bjorck, H. Matsuda, S. E. Webber, C. A. Veale, and a. et. Actions of lipoxin A4 and related compounds in smooth muscle preparations and on the microcirculation in vivo. Adv. Exp. Med. Biol. 229:107–30(1988).

    Google Scholar 

  86. T. Takano, C. B. Clish, K. Gronert, N. Petasis, and C. N. Serhan. Neutrophil-mediated changes in vascular permeability are inhibited by topical application of aspirin-triggered 15-epi-lipoxin A4 and novel lipoxin B4 stable analogues. J Clin Invest. 101:819–26 (1998).

    Google Scholar 

  87. W. Makarewicz. Response of purine metabolism to hypoxia and ischemia. Adv. Exp. Med. Biol. 431:351–7 (1998).

    Google Scholar 

  88. B. N. Cronstein. Adenosine, an endogenous anti-inflammatory agent. J. Appl. Physiol. 76:5–13 (1994).

    Google Scholar 

  89. X. Zhou, X. Zhai, and M. Ashraf. Preconditioning of bovine endothelial cells. The protective effect is mediated by an adenosine A2 receptor through kinase signaling pathway. Circ. Res. 78:73–81 (1996).

    Google Scholar 

  90. R. de Jonge, S. Bradamante, and J. W. de Jong. Cardioprotection by ischemic preconditioning. Role of adenosine and glycogen. Adv. Exp. Med. Biol. 431:279–82 (1998).

    Google Scholar 

  91. L. Airas, J. Niemela, M. Salmi, T. Puurunen, D. J. Smith, and S. Jalkanen. Differential regulation and function of CD73, a glycosyl-phosphatidylinositol-linked 70-kD adhesion molecule, on lymphocytes and endothelial cells. J. Cell Biol. 136:421–431 (1997).

    Google Scholar 

  92. T. Minamino, M. Kitakaze, T. Morioka, K. Node, K. Komamura, H. Takeda, M. Inoue, M. Hori, and T. Kamada. Cardioprotection due to preconditioning correlates with increased ecto-5′-nucleotidase activity. Am. J. Physiol. 270:H238–44 (1996).

    Google Scholar 

  93. T. Kaji, M. Inada, C. Yamamoto, Y. Fujiwara, and F. Koizumi. Cyclic AMP-dependent pathway that mediates suppressive regulation of glycosaminoglycan production in cultured vascular endothelial cells. Thromb. Res. 82:389–97 (1996).

    Google Scholar 

  94. M. M. Burcin, G. Schiedner, S. Kochanek, S. Y. Tsai, and B. W. O'Malley. Adenovirus-mediated regulable target gene expression in vivo. Proc. Natl. Acad. Sci. USA 96:355–60 (1999).

    Google Scholar 

  95. X. Ye, V. M. Rivera, P. Zoltick, F. Cerasoli Jr., M. A. Schnell, G. Gao, J. V. Hughes, M. Gilman, and J. M. Wilson. Regulated delivery of therapeutic proteins after in vivo somatic cell gene transfer. Science 283:88–91 (1999).

    Google Scholar 

  96. H. Prentice, N. H. Bishopric, M. N. Hicks, D. J. Discher, X. Wu, A. A. Wylie, and K. A. Webster. Regulated expression of a foreign gene targeted to the ischaemic myocardium. Cardiovasc. Res. 35:567–74 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean P. Colgan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, C.T., Colgan, S.P. Therapeutic Targets for Hypoxia-Elicited Pathways. Pharm Res 16, 1498–1505 (1999). https://doi.org/10.1023/A:1011936016833

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011936016833

Navigation