Skip to main content
Log in

A Proposed Process Control Chart for DC Plasma Spraying Process. Part II. Experimental Verification for Spraying Alumina

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The role of particle injection velocity in influencing the nature of alumina coatings obtained by plasma spraying was studied. Previously reported process chart obtained by computational fluid dynamics (CFD) study on the particle states of alumina with respect to particle injection velocity and size was verified experimentally. For this purpose, alumina particles of three different size ranges with a mean size of 25, 40, and 76 μm were subjected to different injection velocities. The coating obtained was analyzed for cross-sectional microstructure and thickness by optical microscopy. In addition, the role of particle injection velocity and size in influencing the coating-deposition efficiency was studied. The experimental results agreed well with the CFD results, which had indicated the dependence of particle trajectory in the plasma plume on the particle injection velocity and size leading to the changes in the extent of melting. While a higher coating thickness and deposition efficiency was obtained with 25-μm particles, with further increase in particle size, a reverse trend was observed. This was attributed to the changes in heat-transfer characteristics of the particles with size, which governed the coating buildup and deposition efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. Pfender, Proc. National Thermal Spray Conf. Orlando, Florida (1987), pp. 1–10.

  2. I. A. Fisher, “Variables influencing the characteristics of plasma sprayed coatings”, Intern. Met. Rev. 17, 117 (1972).

    Article  CAS  Google Scholar 

  3. L. C. Erickson, T. Troczynski, H. M. Howthorne, H. Tai, and D. Ross, Proc. 15 th Intern. Thermal Spray Conference, Nice, Vol. 1 (1998), pp. 791–796

    CAS  Google Scholar 

  4. J. R. Fincke, W. D. Swank, and D. C. Haggard, Plasma Chem. Plasma Process. 13, 579 (1993).

    Article  CAS  Google Scholar 

  5. M. Rahmane, G. Soucy, M. I. Boulos, and R. Henne, J. Thermal Spray Technol. 7, 349 (1998).

    Article  CAS  Google Scholar 

  6. M. Vardelle, A. Vardelle, and P. Fauchais, J. Thermal Spray Technol.2, 79 (1993).

    Article  CAS  Google Scholar 

  7. C. B. Ang, H. W. Ng, S. C. M. Yu, and Y. C. Lam, Plasma Chem. Plasma Process. 20, 325 (2000).

    Article  CAS  Google Scholar 

  8. Lech Pawlowski, Proc. Nat. Thermal Spray Conf. Orlando, Florida (1987), pp. 277–284.

  9. E. M. Levio, M. S. Vippola, P. P. A. Sorsa, P. M. J. Vuoristo, and T. A. Mantyla, J. Thermal Spray Technol. 6, 205 (1997).

    Article  Google Scholar 

  10. P. Fauchais, A. Vardelle, M. Vardelle, F. Monerie, A. Denoirjean, and A Grimaud, Proc. 4 th Nat. Thermal Spray Conf. Pittsburg, Pennsylvania (1991), pp. 205–213.

  11. FLUENT V4.3, User's Guide, Fluent Inc., Lebanon, New Hampshire (1994).

  12. K. G. Shaw and R. M. German, Proc. 7 th Nat. Thermal Spray Conf., Boston, Massachusetts (1994), pp. 399–404.

  13. PreBFC V4.3, User's Guide, Fluent Inc., Lebanon, New Hampshire (1994).

  14. J. F. Douglas, J. M. Gasiorek, and J. A. Swaffied, Fluid Mechanics, 3rd edn., Longman, New York (1995), p. 35.

    Google Scholar 

  15. M. Vardelle, A. Vardelle, B. Dussoubs, P. Fauchais, T. J. Roemer, R. A. Neiser, and M. F. Smith, Thermal Spray: Meeting the Challenges of the 21 st Century, Nice C. Coddet, ed., ASM International, Ohio (1998), pp. 887–894.

    Google Scholar 

  16. Operator's Manual, Model 3702, Control Console, Praxair Surface Technologies, WI, (1997), p. 32.

  17. J. R. Fincke, W. D. Swank, and D. C. Haggard, United Forum for Scientific and Technological Advances, Indianapolis, C. C. Berndt, ed., ASM International, Ohio (1997), pp.335–342

    Google Scholar 

  18. A. Devasenapathi, Y. Shimizu, K. Sakaki, and T. Minamida, J. Jpn. Thermal Spray. Soc. 36, 1 (1999).

    CAS  Google Scholar 

  19. M. Vardelle, A. Vardelle, K.-I. Li, P. Fauchais, and N. J. Themelis, Pure Appl. Chem. 68, 1093 (1996).

    Article  CAS  Google Scholar 

  20. D. J. Varacalle, Jr, G. C. Wilson, D. E. Crawmer, and P. A. Didier, Proc. 7 th Nat. Thermal Spray Conf. Boston, Massachusetts (1994), pp. 211–220.

  21. K. Remesh, H. W. Ng, and S. C. M. Yu, unpublished work (2000).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ang, C.B., Devasenapathi, A., Ng, H.W. et al. A Proposed Process Control Chart for DC Plasma Spraying Process. Part II. Experimental Verification for Spraying Alumina. Plasma Chemistry and Plasma Processing 21, 401–420 (2001). https://doi.org/10.1023/A:1011026526843

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011026526843

Navigation