Skip to main content
Log in

Effect of abscisic acid and jasmonic acid on partial desiccation of encapsulated somatic embryos of sugarcane

  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

Embryogenic calli of sugarcane (Saccharum sp. hybrid, clone CP52-43), with somatic embryos in the late scutelar stage, were subjected to different treatments for increasing embryo tolerance to desiccation. The medium was supplemented with abscisic acid (ABA) (3.8 μM), jasmonic acid (JA) (4.7 μM) or a combination of them. A control treatment without growth regulators was also included. The embryos were encapsulated in alginate beads and dehydrated or not in sucrose (0.5 M). Thereafter, they were further dehydrated in chambers containing silicagel until the beads reached either 60% or 30% of water content (WC). Survival of encapsulated-dehydrated embryos was achieved only in the control and ABA treatment. ABA induced an increase in protein, polyamines, free proline levels and starch levels as a response to desiccation tolerance. JA treatment showed the lowest protein and polyamines levels and increased the starch content almost two-fold compared to the ABA treatment. The JA treatment induced high levels of 4-methylcatechol and the lowest levels of gallic acid. However, the ABA treatment increased gallic acid and p-coumaric acid content in the induction medium. Some differences were found in growth regulator free-medium in relation to the induction medium. JA is not effective in these desiccation processes. The mechanisms by which these two plant growth regulators act on the induction of tolerance to stress are presumably different.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams CA & Rinne RW (1980) Moisture content as a controlling factor in seed development and germination. International Review of Cytology 68: 1-8

    Article  Google Scholar 

  • Alther S, Stirn S & Jacobsen HJ (1993) Inmunobiochemical analysis of a nuclear protein marker for regeneration potential in higher plants. J. Plant Physiol. 141: 415-422

    Google Scholar 

  • Anandarajah K & McKersie BD (1990) Enhanced vigour of dry somatic embryos of Medicago sativa L. with increased sucrose. Plant Sci. 71: 261-266

    Article  CAS  Google Scholar 

  • Attree SM, Moore D, Sawhney VK & Fowke LC (1991). Enhanced maturation and desiccation tolerance of white spruce (Picea glauca (Moench) Voss) somatic embryos: Effects of a non-plasmolysing water stress and abscisic acid. Ann. Bot. 68: 519-525

    Google Scholar 

  • Bates LS, Waldron RP & Teare LD (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1): 205-207

    Article  CAS  Google Scholar 

  • Bradford MM (1976)A rapid and sensitive method for the quantitation of microgram quanties of protein-dye binding. Anal. Bioch. 72: 248-254

    Article  CAS  Google Scholar 

  • Black M (1991) Involvement of ABA in the physiology of developing and mature seeds. In: Davies WJ & Jones HG (eds) Abscisic acid Physiology and Biochemistry Environmental Plant Biology series (pp 99-124). Bios Scientific Publishers

  • Carman JG (1988) Improved somatic embryogenesis in wheat by partial simulation of the in ovulo oxygen, growth regulator and dessication environments. Planta 175: 417-424

    Article  Google Scholar 

  • Carpita NC (1986) Incorporation of proline and aromatic aminoacid into cell wall of maize celeoptiles. Plant Physiol. 80: 660-666

    PubMed  CAS  Google Scholar 

  • Creelman RA & Nullet JE (1997) Biosynthesis and action of jasmonates in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 355-381

    Article  PubMed  CAS  Google Scholar 

  • Cvikrová M, Hrubcová M, Eder J & Binarová P (1996) Changes in the levels of endogenous phenolics, aromatic monoamines, phenylalanine ammonia-lyase, peroxidase and auxin oxidase activities during initiation of alfalfa embryogenic and nonembryogenic calli. Plant Physiol. Biochem. 34(6): 853-861

    Google Scholar 

  • Errea P, Treutter D & Feucht W (1992) Specificity of individual flavan-3-ols interfering with the grafting stress of apricots. Angewandte Botanik. 66: 21-24

    CAS  Google Scholar 

  • Feucht W, Treutter D & Christ E (1992) The precise localization of catechins and proanthocyanidins in protective layers around fungal infections. Zeitschrift fur Pflanzenkrankheiten und Planzenschutz. 99: 404-413

    CAS  Google Scholar 

  • Flores HE & Galston AW (1982) Analysis of polyamines in higher plants by High Performance Liquid Chromatography. Plant Physiol. 69: 701-706

    PubMed  CAS  Google Scholar 

  • Gutmann M, Von Aderkas P, Label P & Lelu MA (1996) Effects of abscisic acid on somatic embryo maturation of hybrid larch. J. Exper. Bot. 47(305): 1905-1917

    CAS  Google Scholar 

  • Iida Y, Watabe K, Kamada H & Harada H (1992) Effects of abscisic acid on the induction of desiccation tolerance in carrot somatic embryos. J. Plant Physiol. 140: 356-360

    CAS  Google Scholar 

  • Ingram J & Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 377-403

    Article  PubMed  CAS  Google Scholar 

  • Kitto SL & Janick J (1985) Hardening treatments increase survival of synthetically-coated asexual embryos of carrot. J. Am. Soc. Hort. Sci. 110: 283-286

    CAS  Google Scholar 

  • Lecouteux C, Lai FM & McKersie BD (1993) Maturation of somatic embryos by abscisic acid, sucrose and chilling. Plant Sci. 94: 207-213

    Article  CAS  Google Scholar 

  • Mace ME & Bell AA (1981) Fravonol and terpenoid aldehyde synthesis in tumours asociated with genetic incompatibility in a Gossypium hirsutum χ G. Gossypioides hybrid. Can. J. Bot. 59: 951-955

    CAS  Google Scholar 

  • Minocha R, Kvaalen H, Minocha SC & Long S (1993) Polyamines in embryogenic cultures of Norway spruce (Picea abies) andRed spruce (Picea rubens). Tree Physiol. 13: 365-377

    PubMed  CAS  Google Scholar 

  • Murashige T & Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco cultures. Physiologia Plantarum. 15: 473-497

    Article  CAS  Google Scholar 

  • Nieves N, Lorenzo JC, Blanco MA, González JL, Peralta H, Hernández M, Santos R, Concepció n O, Borroto E, Borroto CG, Tapia R, Martínez M & Fundora Z (1998) Artificial endosperm by zygotic embryos of Cleopatra tangerine (Citrus reshni Hort ex Tan). A model by somatic embryos emcapsulation. Plant Cell Tiss. Org. Cult. 54(2): 77-83

    Article  Google Scholar 

  • Pitel JA, Yoo BY, Klimaszewska K & Charest P (1992) Changes in enzyme activity and protein patterns during the maturation phase of somatic embryogenesis in hybrid larch (Larix $#x03C7; eurolepis). Can. J. For. Res. 22: 553-560

    CAS  Google Scholar 

  • Santanen A & Simola LK (1992) Changes in polyamine metabolism during somatic embryogenesis in Picea abies. J. Plant Physiol. 140: 475-480

    CAS  Google Scholar 

  • Senaratna T, McKersie BD & Bowley SR (1990) Artificial seed of alfalfa (Medicago sativa L.). Induction of desiccation tolerance in somatic embryos. In Vitro Cell Ded. Biol. 26: 85-90

    Google Scholar 

  • Takahata Y, Brown DCW, Keller WA & Kaizuma N (1993) Dry artificial seed and desiccation tolerance induction in microsporederived embryos of broccoli. Plant Cell Tiss. Org. Cult. 35: 121-129

    Article  CAS  Google Scholar 

  • Tapia R, Castillo R, Nieves N, Blanco MA, Gonzalez JL, Sanchez M & Rodriguez Y (1999) Inducció n, maduració n y encapsulació n de embriones somáticos de cañ a de azú car (Saccharum sp. híbrido) var. CP 5243. Biotecnología Aplicada. 16(1): 20-23

    CAS  Google Scholar 

  • Tetteroo FAA, Hoekstra FA & Karssen CM (1995) Induction of complete desiccation tolerance in carrot (Daucus carota) embryoids. J. Plant Physiol. 145: 349-356

    CAS  Google Scholar 

  • Timbert R, Barbotim JN & Thomas D (1996) Enhancing carrot somatic embryos survival during slow dehydration, by encapsulation and control of dehydration. Plant Science 120: 215-222

    Article  CAS  Google Scholar 

  • Yemm EW & Willis AJ (1966) The estimation of carbohydrates in plant extracts by Antrone. Biochem. J. 57: 508-514

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadina Nieves.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nieves, N., Martínez, M.E., Castillo, R. et al. Effect of abscisic acid and jasmonic acid on partial desiccation of encapsulated somatic embryos of sugarcane. Plant Cell, Tissue and Organ Culture 65, 15–21 (2001). https://doi.org/10.1023/A:1010699532641

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010699532641

Navigation