Skip to main content
Log in

Selective isolation and characterisation of members of the Streptomyces violaceusniger clade associated with the roots of Paraserianthes falcataria

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Large numbers of putatively novel streptomycetes were isolated from environmental samples collected from in and around the root system of the tropical angiosperm, Paraserianthes falcataria. Representative isolates were assigned to 37 multi-membered and 107 single membered colour groups based on their ability to form pigments on oatmeal and peptone yeast extract iron agars. The largest taxon, colour group 3, encompassed 94 isolates which had morphological properties typical of members of the Streptomyces violaceusniger clade. Twelve representatives of this taxon chosen on the basis of Curie-point pyrolysis mass spectrometric data were compared with representatives of the validly described species which constitute the Streptomyces violaceusniger clade. Six out of the twelve representative strains were readily distinguished from one another and from the marker strains using a combination of genotypic and phenotypic properties. These organisms were consequently considered to merit species status as Streptomyces asiaticus sp. nov., Streptomyces cangkringensis sp. nov., Streptomyces indonesiensis sp. nov., Streptomyces javensis sp. nov., Streptomyces rhizosphaerius sp. nov. and Streptomyces yogyakartensis sp. nov.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Tai A, Kim B, Kim SB, Manfio GP & Goodfellow M (1999) Streptomyces malaysiensis sp. nov., a new streptomycete species with rugose, ornamented spores. Int. J. Syst. Bacteriol. 49: 1395–1402

    Google Scholar 

  • Arcamone FC, Bertazzoli C, Ghione M & Scotti T (1959) Melanosporin and elaiophylin, new antibiotics from S. melanosporus (sive melanosporofaciens) n. sp. G. Microbiol. 71: 207–216

    Google Scholar 

  • Atalan E, Manfio GP, Ward AC, Kroppenstedt RM & Goodfellow M (2000) Biosystematic studies on novel streptomycetes from soil. Antonie van Leeuwenhoek 77: 337–353

    Google Scholar 

  • Chun J (1995) Computer-assisted Classification and Identification of Actinomycetes. Ph.D. thesis. University of Newcastle, Newcastle upon Tyne, UK

    Google Scholar 

  • Chun J & Goodfellow M (1995) A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int. J. Syst. Bacteriol. 45: 240–245

    Google Scholar 

  • Colquhoun JA, Heald SC, Li L, Tamaoka J, Kato C, Horikoshi K & Bull AT (1998a) Taxonomy and biotransformation activities of some deep-sea actinomycetes. Extremophiles 2: 269–277

    Google Scholar 

  • Colquhoun JA, Mexson J, Goodfellow M, Ward AC, Horikoshi K & Bull AT (1998b) Novel rhodococci and other mycolate actinomycetes from the deep-sea. Antonie van Leeuwenhoek 74: 27–40

    Google Scholar 

  • Colquhoun JA, Zulu J, Goodfellow M, Horikoshi K, Ward AC & Bull AT (2000) Rapid characterisation of deep-sea actinomycetes for biotechnology screening programmes. Antonie van Leeuwenhoek 77: 359–367

    Google Scholar 

  • Crawford DL, Lynch J, Whipps J & Ousley M (1993) Isolation and characterization of actinomycete antagonists of a fungal root pathogen. Appl. Environ. Microbiol. 59: 3889–3905

    Google Scholar 

  • El-Abyad MS, El-Sayed MA, El-Shanshoury AR & El-Sabbagh SM (1993) Towards the biological control of fungal and bacterial diseases of tomato using antagonistic Streptomyces spp. Plant and Soil 149: 185–193

    Google Scholar 

  • Embley TM & Stackebrandt E (1997) Species in practice: exploring uncultured prokaryotic diversity in natural samples. In: Claridge MF Dawah HA & Wilson MR (Eds) Species: the Units of Diversity (pp 61–81). Chapman & Hall, London

    Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17: 368–376

    Google Scholar 

  • Ferguson EV, Ward AC, Sanglier JJ & Goodfellow M (1996) Evaluation of Streptomyces species-groups by pyrolysis mass spectrometry. Zbl Bakt 285: 169–181

    Google Scholar 

  • Fitch, WM & Margoliash E (1967) Construction of phylogenetic trees: a method based on mutation distances as estimated from cytochrome C sequences is of general applicability. Science 155: 279–284

    Google Scholar 

  • Goodfellow M & Haynes JA (1984) Actinomycetes in marine sediments. In: Ortiz-Ortiz L Bojalil LF & Yakoleff V (Eds) Biological, Biochemical and Biomedical Aspects of Actinomycetes (pp 453–472). Academic Press, Orlando

    Google Scholar 

  • Goodfellow M, Davenport R, Stainsby FM & Curtis TP (1996) Actinomycete diversity associated with foaming in activated sludge plants. J. Ind. Microbiol. 17: 268–280

    Google Scholar 

  • Goodfellow M, Stainsby FM, Davenport R, Chun J & Curtis T (1998) Activated sludge foaming: the true extent of actinomycete diversity. Water Sci. Technol. 37: 511–519

    Google Scholar 

  • Hopkins DW, O'Donnell AG & MacNaughton SJ (1991a) Evaluation of a dispersion and elutriation technique for sampling microorganisms from soil. Soil Biol. Biochem. 23: 227–232

    Google Scholar 

  • Hopkins DW, MacNaughton SJ & O'Donnell AG (1991b) A dispersion and differential centrifugation technique for representatively sampling microorganisms from soil. Soil Biol. Biochem. 23: 217–225

    Google Scholar 

  • Jensen HL (1931) Contribution to our knowledge of the Actinomycetales. II. The definition and subdivision of the genus Actinomyces, with a preliminary account of Australian soil actinomycetes. Proc. Linn. Soc. NSW 56: 345–370

    Google Scholar 

  • Jones KL (1949) Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J. Bacteriol. 57: 141–145

    Google Scholar 

  • Kämpfer P, Kroppenstedt RM & Dott W (1991) A numerical classification of the genera Streptomyces and Streptoverticillium using miniaturized physiological tests. J. Gen. Microbiol. 137: 1831–1891

    Google Scholar 

  • Kay HE, Coutinho HLC, Fattori M, Manfio GP, Goodacre R, Nuti MP, Basaglia M & Beringer JE (1994) The identification of Bradyrhizobium japonicum strains isolated from Italian soils. Microbiology 140: 2333–2339

    Google Scholar 

  • Kelly KL (1958) Central notations for the revised ISCC-NBS color name blocks. J. Res. Nat. Bureau Standards USA 61: 427

    Google Scholar 

  • Kim B, Sahin N, Minnikin DE, Zakrzewska-Czerwinska J, Mordarski M & Goodfellow M (1999) Classification of thermophilic streptomycetes including the description of Streptomyces thermoalcalitolerans sp. nov. Int. J. Syst. Bacteriol 49: 7–17

    Google Scholar 

  • Kim B, Al-Tai AM, Kim SB, Somasundaram P & Goodfellow M (2000) Streptomyces thermocoprophilus sp. nov., a cellulasefree endo-xylanase-producing streptomycete. Int. J. Syst. Evol. Microbiol 50: 505–509

    Google Scholar 

  • Kim SB, Falconer C, Williams E & Goodfellow M (1998) Streptomyces thermocarboxydovorans sp. nov. and Streptomyces thermocarboxydus sp. nov., two moderately thermophilic carboxydotrophic species from soil. Int. J. Syst. Bacteriol 48: 59–68

    Google Scholar 

  • Kovach WL (1988) Multivariate methods of analysing paleoecological data. In DiMichelle WA & Wing SL (Eds) The Paleontological Society Special Publications. Methods and Application of Plant Paleontology (pp 72–104)

  • Küster E (1959) Outline of a comparative study of criteria used in characterization of the actinomycetes. Int. Bull. Bacteriol. Nomencl. Taxon 9: 97–104

    Google Scholar 

  • Küster E & Williams ST (1964) Selection of media for isolation of streptomycetes. Nature 202: 928–929

    Google Scholar 

  • Labeda DP (1993) DNA relatedness among strains of the Streptomyces lavendulae phenotypic cluster group. Int. J. Syst. Bacteriol. 43: 822–825

    Google Scholar 

  • Labeda DP (1998) DNA relatedness among the Streptomyces fulvissimus and Streptomyces griseoviridis phenotypic cluster groups. Int. J. Syst. Bacteriol. 48: 829–832

    Google Scholar 

  • Labeda DP & Lyons AJ (1991) The Streptomyces violaceusniger cluster is heterogeneous in DNA relatedness among strains: Emendation of the descriptions of Streptomyces violaceusniger and Streptomyces hygroscopicus. Int. J. Syst. Bacteriol. 41: 398–401

    Google Scholar 

  • Labeda DP & Lyons AJ (1992) DNA relatedness among strains of the sweet potato pathogen Streptomyces ipomoea (Person and Martin 1940) Waksman and Henrici 1948. Appl. Environ. Microbiol. 58: 532–535

    Google Scholar 

  • Li L, Kato C & Horikoshi K (1999) Bacterial diversity in deep sea sediments from different depths. Biodiver. Conserv. 8: 659–677

    Google Scholar 

  • MacNaughton SJ & O'Donnell AG (1994) Tuberculostearic acid as a means of estimating the recovery (using dispersal and differential centrifugation) of actinomycetes from soil. J. Microbiol. Meth. 20: 69–77

    Google Scholar 

  • Maidak BL, Olsen GJ, Larsen N, Overbeek R, McCaughey MJ & Woese CR (1997) The Ribosomal Database Project (RDP). Nucleic Acid Res. 25: 109–111

    Google Scholar 

  • Manfio GP (1995) Towards Minimal Standards for the Description of Streptomyces species. Ph.D. thesis. University of Newcastle, Newcastle upon Tyne, UK

    Google Scholar 

  • Manfio GP, Zakrzewska-Czerwinska J, Atalan E & Goodfellow M (1995) Towards minimal standards for the description of Streptomyces species. Biotechnologia 7–8: 242–253

    Google Scholar 

  • Marilley L & Aragno M (1999) Phylogenetic diversity of bacterial communities differing in degree of proximity of Lolium perenne and Trifolium repens roots. Applied Soil Ecology 13: 127–136

    Google Scholar 

  • Miller JJ, Liljeroth E, Henken G & van Veen JA (1990) Fluctuations in the fluorescent pseudomonad and actinomycete populations of rhizosphere and rhizoplane during the growth of spring wheat. Can. J. Microbiol. 36: 254–258

    Google Scholar 

  • National Bureau of Standards (1964) The ISCC-NBS Colour Manual Charts Illustrated with Centroid Colours. Supplement to NBS, Circular 553

  • Rothrock CS & Gottlieb D (1984) Role of antibiosis in antagonism of Streptomyces hygroscopicus var. geldanus to Rhizoctonia solani in soil. Can. J. Microbiol. 30: 1440–1447

    Google Scholar 

  • Saitou N & Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425

    Google Scholar 

  • Sanglier JJ, Whitehead D, Saddler GS, Ferguson EV & Goodfellow M(1992) Pyrolysis mass spectrometry as a method for the classi-fication, identification and selection of actinomycetes. Gene 115: 235–242

    Google Scholar 

  • Sardi P, Saracchi M, Quaroni B, Petrolini B, Borgonovi & Nesli S (1992) Isolation of endophytic Streptomyces strains from surface-sterilised roots. Appl. Environ. Microbiol. 58: 2691–2698

    Google Scholar 

  • Sembiring L (2000) Selective Isolation and Characterisation of Streptomycetes Associated with the Rhizosphere of the Tropical Legume Paraserianthes falcataria (L) Nielsen. Ph.D. thesis. University of Newcastle, Newcastle upon Tyne, UK

    Google Scholar 

  • Sembiring L, Goodfellow M & Ward AC (2000) The Streptomyces violaceusniger clade: a home for streptomycetes producing rugose spores. Int. J. Syst. Evol. Microbiol. (in press)

  • Shirling EB & Gottlieb D (1966) Methods for characterisation of Streptomyces species. Int. J. Syst. Bacteriol. 16: 313–340

    Google Scholar 

  • Smith J, Putnam A & Nair M (1990) In vitro control of Fusarium diseases of Asparagus officinalis L. with a Streptomyces or its polyene antibiotic, faerifungin. J. Agric. Food. Chem. 38: 1729–1733

    Google Scholar 

  • Sneath PHA & Sokal RR (1973) Numerical Taxonomy: The Principles and Practice of Numerical Classification. W.H. Freeman, Baltimore

    Google Scholar 

  • Sokal RR & Michener CD (1958) A statistical method for evaluating systematic relationships. Kan. Univ. Sci. Bull. 38: 1409–1438

    Google Scholar 

  • Staneck JL & Roberts GD (1974) Simplified approach to identi-fication of aerobic actinomycetes by thin-layer chromatography. Appl. Microbiol. 28: 225–231

    Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F & Higgins DG (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tool. Nucleic Acid Res. 24: 4876–4882

    Google Scholar 

  • Trejo-Estrada SR, Paszczynski A & Crawford DL (1998a) Antibiotics and enzymes produced by the biocontrol agent Streptomyces violaceusniger YCED-9. J. Ind. Microbiol. Biotech. 21: 81–90

    Google Scholar 

  • Trejo-Estrada SR, Sepulveda SR & Crawford DL (1998b) In vitro and in vivo antagonism of Streptomyces violaceusniger YCED9 against fungal pathogens of turfgrass. Wrld. J. Microbiol. Biotech. 14: 865–872

    Google Scholar 

  • Trujillo M & Goodfellow M (1997) Polyphasic taxonomic study of clinically significant actinomadurae including the description of Actinomadura latina sp. nov. Zbl. Bakt. 285: 212–233

    Google Scholar 

  • Upton M (1994) Ecological Approaches to the Selective Isolation of Actinomycetes for Bioactivity Screening. Ph.D. thesis, University of Newcastle, Newcastle upon Tyne, UK

    Google Scholar 

  • Vickers JC & Williams ST (1987) An assessment of plate inoculation procedures for the enumeration and isolation of soil streptomycetes. Microbios Lett. 35: 113–117

    Google Scholar 

  • Vickers JC, Williams ST & Ross GW(1984) A taxonomic approach to selective isolation of streptomycetes from soil. In: Ortiz-Ortiz L Bojalil LF & Yakoleff V (Eds) Biological, Biochemical and Biomedical Aspects of Actinomycetes (pp 553–561). Academic Press, London

    Google Scholar 

  • Waksman SA & Curtis RE (1916) The actinomyces of the soil. Soil Sci. 1: 99–134

    Google Scholar 

  • Watson ET & Williams ST (1974) Studies on the ecology of actinomycetes in soil. VII. Actinomycetes in a coastal belt. Soil Biol. Biochem. 6: 43–52

    Google Scholar 

  • Wayne LG, Brenner DJ, Colwell RR & 9 other authors (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37: 463–464

    Google Scholar 

  • Williams ST & Vickers JC (1988) Detection of actinomycetes in the natural environment – problems and perspectives. In: Okami Y, Beppu T & Ogawara H (Eds) Biology of Actinomycetes '88 (pp 265–270). Japan Scientific Societies Press, Tokyo

    Google Scholar 

  • Williams ST, Goodfellow M, Alderson G, Wellington EMH, Sneath PHA & Sackin MJ (1983) Numerical classification of Streptomyces and related genera. J. Gen. Microbiol. 129: 1743–1813

    Google Scholar 

  • Williams ST, Lanning S & Wellington EMH (1984) Ecology of actinomycetes. In: Goodfellow M, Mordarski M & Williams ST (Eds) The Biology of the Actinomycetes (pp 481–528). Academic Press, London

    Google Scholar 

  • You MP, Sivasithamparam K & Kurteboke DI (1996) Actinomycetes in organic mulch used in avocado plantations and their ability to suppress Phytophthera cinnamoni. Biol. Fertil. Soils 22: 237–242

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Goodfellow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sembiring, L., Ward, A.C. & Goodfellow, M. Selective isolation and characterisation of members of the Streptomyces violaceusniger clade associated with the roots of Paraserianthes falcataria . Antonie Van Leeuwenhoek 78, 353–366 (2000). https://doi.org/10.1023/A:1010226515202

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010226515202

Navigation