Skip to main content
Log in

Phase Diagram of the AgNO3–CsNO3 System

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The phase diagram of the binary AgNO3–CsNO3 system was constructed using differential thermal analysis (DTA) technique in the range 300–700 K. The apparatus is described briefly. The results exhibit a congruently melting compound CsNO3·AgNO3 (m.p.=453 K) characterized by two allotropic varieties α and β, an incongruently melting compound AgNO3·CsNO3 (m.p.=450 K) with three forms α′, β′ and γ′, two eutectics (16 mol% CsNO3, 442 K and 32.5 mol% CsNO3, 445 K) and a peritectic (38mol% CsNO3, 450 K). The occurrence of the transitions of intermediates was confirmed by X-ray diffraction at variable temperatures. The phase diagram exhibits also two plateaus at 429 K and 435 K corresponding to the phase transitions of CsNO3 and AgNO3, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Zamali and M. Jemal, AFCAT, Journées 20–22 Mai 1985, Montpellier, France, Vol. 16, 1985, 298.

    Google Scholar 

  2. H. Zamali and M. Jemal, XVème J.E.E.P., Grenoble, France (1989) 83.

  3. H. Zamali and M. Jemal, J. Thermal Anal., 41 (1994) 1091.

    Google Scholar 

  4. H. Zamali and M. Jemal, J. Phase Equilib., 16 (1995) 235.

    Google Scholar 

  5. N. Bélaid-Drira, H. Zamali and M. Jemal, J. Thermal Anal., 46 (1996) 1449.

    Google Scholar 

  6. A. P. Palkin, Zh. Fiz. Khim., 60 (1928) 317.

    Google Scholar 

  7. G. Flor and C. Sinistri, Ric. Sci., 38 (1968) 227.

    Google Scholar 

  8. D. Leonesi, M. Braghetti and A. Cingolani, Annual Meeting, Chimica Inorganica (1969) cited in ref. 9.

  9. G. Gioia Lobbia and A. Cingolani, Ann. Chim., 65 (1975) 361.

    Google Scholar 

  10. D. Leonesi, M. Braghetti and A. Cingolani, Ann. Chim., 66 (1976) 489.

    Google Scholar 

  11. A. Mustajoki, Ann. Acad. Sci. Fenn., A6 (1957) 7.

    Google Scholar 

  12. H. E. Flotow, P. A. G. O'Hare and J. Boerio-Goates, J. Chem. Thermodyn., 13 (1981) 477.

    Google Scholar 

  13. P. W. Bridgman, Proc. Amer. Acad., 51 (1916) 581.

    Google Scholar 

  14. T. Jriri, J. Rogez, C. Bergman and J.-C. Mathieu, Thermochim. Acta, 266 (1995) 147.

    Google Scholar 

  15. I. Kazuhiko and M. Toshiyuki, Bull. Chem. Soc. Jpn., 56 (1983) 2093.

    Google Scholar 

  16. A. Tadashi, K. Mineo and T. Hiroshi, Nagoya Kogyo Gijutsu Shikensho Hokoku (Reports Government Industrial Research Institute Nagoya), 29 (1980) 25.

    Google Scholar 

  17. G. G. Diogenov and I. F. Sarapulova, Russ. J. Inorg. Chem., 10 (1965) 1055.

    Google Scholar 

  18. B. B. Owens, J. Chem. Phys., 42 (1965) 2259.

    Google Scholar 

  19. G. J. Janz and D. W. James, J. Chem. Phys., 35 (1961) 739.

    Google Scholar 

  20. O. J. Kleppa and F. G. McCarty, J. Chem. Eng. Data, 8 (1963) 331.

    Google Scholar 

  21. D. J. Hissink, Z. Phys. Chem., 32 (1900) 537.

    Google Scholar 

  22. A. Ussow, Z. Anorg. Chem., 38 (1904) 419.

    Google Scholar 

  23. P. Franzosini and C. Sinistri, Ric. Sci., Rend. Sez., A3 (1963) 439.

    Google Scholar 

  24. D. M. Newns and L. A. K. Staveley, Chem. Rev., 66 (1966) 267.

    Google Scholar 

  25. V. C. Reinsborough and F. E. W. Wetmore, Aust. J. Chem., 20 (1967) 1.

    Google Scholar 

  26. N. R. Thompson, Comprehensive Inorganic Chemistry, 3, Ed. Wilson & Wilson's Elsevier, Amsterdam 1973, 104.

    Google Scholar 

  27. K. Mészáros Szécsenyi, K. Tomor and G. Pokol, J. Thermal Anal., 41 (1994) 125.

    Google Scholar 

  28. H. Zamali, Thèse Doct. Sci. Phys., Noo D194, (1996), Faculté des Sciences de Tunis, Tunisia.

    Google Scholar 

  29. E. Rhodes and A. R. Ubbelohde, Proc. Roy. Soc., A (1959) 156.

  30. M. Bakes, J. Dupuy and J. Guion, Compt. Rend., 256 (1963) 2376.

    Google Scholar 

  31. T. B. Douglas, Trans. Asme, 79 (1957) 23.

    Google Scholar 

  32. G. J. Janz, D. W. James and J. Goodkin, J. Phys. Chem., 64 (1960) 937.

    Google Scholar 

  33. H. M. Goodwin and H. T. Kalmus, Phys. Rev., 28 (1909) 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hellali, D., Zamali, H., Sebaoun, A. et al. Phase Diagram of the AgNO3–CsNO3 System. Journal of Thermal Analysis and Calorimetry 57, 569–574 (1999). https://doi.org/10.1023/A:1010188613487

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010188613487

Navigation