Skip to main content
Log in

Phase Equilibria in the Ag2Se–Cu2SnSe3 and Ag8SnSe6–Cu2SnSe3 Systems

  • PHYSICOCHEMICAL ANALYSIS OF INORGANIC SYSTEMS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The phase formation in the sections Ag2Se–Cu2SnSe3 and Ag8SnSe6–Cu2SnSe3 of the quasi-ternary system Ag2Se–SnSe2–Cu2Sе was studied for the first time by differential thermal analysis (with thermodynamic calculations), X-ray powder diffraction analysis, and microstructural analysis and also by microhardness and density measurements. No new quaternary compounds were detected. It was determined that both sections are quasi-binary and are of simple eutectic type with limited solubility based on the initial selenides. The coordinates of the eutectic points are (40 mol % Ag2Se, 910 K) and (50 mol % Ag8SnSe6, 780 K). The solubility based on Cu2SnSe3 was 10 mol % Ag2Se in the system Ag2Se–Cu2SnSe3 and 15 mol % Ag8SnSe6 in the system Ag8SnSe6–Cu2SnSe3. Single crystals of the compound Cu2SnSe3 and the solid solutions (Cu2SnSe3)1 – х(Ag8SnSe6)х (х = 0.02–0.15) were grown by the Bridgman–Stockbarger directional crystallization method. It was found that these solutions crystallize in the monoclinic system, and the unit cell parameters increase with increasing Ag8SnSe6 content: а = 6.968–6.985 Å, b = 12.051–12.078 Å, с = 6.945–6.968 Å, β = 109.20°–109.30°, space group Сс, Z = 4, and ρ = 5.75–5.86 g/cm3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. A. F. Ioffe, Physics of Semiconductors (Akad. Nauk SSSR, Moscow, 1957) [in Russian].

    Google Scholar 

  2. N. Kh. Abrikosov, V. F. Bankina, L. V. Poretskaya, et al., Semiconductor Chalcogenides and Alloys Based on Them (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  3. Physicochemical Properties of Semiconductors, Ed. by L. V. Novoselova and V. B. Lazareva (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  4. M. Kh. Balapakov, R. A. Yakshibaev, and U. Kh. Mukhammed’yanov, Fiz. Tverd. Tela 45, 604 (2003).

    Google Scholar 

  5. M. B. Babanly, Yu. A. Yusibov, and V. T. Abishev, Ternary Chalcogenides Based on Copper and Silver (BGU, Baku, 1993) [in Russian].

    Google Scholar 

  6. E. Shimato and N. Okasaki, J. Phys. Condens. Mater. 5, 3405 (1993).

    Article  Google Scholar 

  7. N. N. Bakkulova, Doctoral Dissertation in Mathematics and Physics (Ufa, 2005).

  8. Y. S. Tveryanovich, A. A. Razumtcev, T. R. Fazletohinov, et al., Thin Solid Films 666, 172 (2018). https://doi.org/10.1016/j.tsf./2018.09.036

    Article  CAS  Google Scholar 

  9. Qi Cao, Yi-Feng Cheng, Han Bi, et al., J. Mater. Chem. A 3, 20091 (2015). https://doi.org/10.1039/C5TA049780

    Article  Google Scholar 

  10. P. J. Prathiba, K. H. Mohanraj, and G. Siva Kumar, Trans. Nonferrous Met. Soc. 25, 2241 (2015). https://doi.org/10.1039/C5TA049780

    Article  Google Scholar 

  11. N. A. Okereke and A. I. Ekounobi, J. Optoelectron. Biomed. Mater., No. 3, 51 (2011).

  12. Yu. A. Yusibov, I. Dzh. Alverdiev, L. F. Mashadiyeva, et al., Russ. J. Inorg. Chem. 63, 162 (2018). https://doi.org/10.1134/S0036023618120227

    Article  Google Scholar 

  13. M. Kreutzbruck, B. Mocwitz, and F. Gruhl, J. Appl. Phys. Lett. 86, 813 (2005).

    Google Scholar 

  14. U. M. Chougale, S. H. Han, M. C. Rath, et al., Mater. Phys. Mech. 17, 47 (2013).

    CAS  Google Scholar 

  15. I. D. Olekseyuk, T. A. Ostapyuk, and T. V. Yuhimuk, Nauk. Vislik Volinsk. Nats. Univ. Imeni Leci Ukrainki. Rozdil I. Neorg. Khim. 29, 35 (2009).

    Google Scholar 

  16. G. E. Delgado, A. J. Mora, G. Marcano, et al., Mater. Res. Bull. 38, 1949 (2003).https://doi.org/10.1016/j.materresbull.2003.09.017

  17. L. D. Gulay, I. D. Olekseyuk, and O. V. Parasyuk, J. Alloys. Compd. 339, 113 (2002). https://doi.org/10.1016/S0925-8388(01)01970-3

    Article  CAS  Google Scholar 

  18. V. A. Rzaguliev, O. Sh. Kerimli, and Sh. G. Mamedov, Proc. XXI Intern. Conf., St. Petersburg, 2019, p. 20.

  19. V. A. Rzaguliev, O. Sh. Kerimli, D. S. Azhdarova, et al., Kondens. Sredy Mezhfaznye Granitsy 21, 544 (2019). https://doi.org/10.17308/komf.2019.21/2365

  20. V. V. Rakitin, Candidate’s Dissertation in Chemistry (Moscow, 2016).

  21. O. F. Zmiy, L. D. Gulay, and O. S. Klimovich, Chem. Met. Alloys, No. 1, 115 (2008). www.chemicaljournal.org.

  22. O. S. Klymovch, Chem. Met. Alloys, No. 1, 288 (2008).

    Google Scholar 

  23. J. Yu and H. Yun, Acta Crystallogr. E 67, 145 (2011).

    Google Scholar 

  24. H. Liu, Nat. Mater. 11, 422 (2012).

    Article  Google Scholar 

  25. L. W. Constantinesch, Thin Solid Films 28, 73 (1983).

    Google Scholar 

  26. Yu. G. Asadov, Yu. I. Aliev, and A. G. Babaev, Fiz. Elem. Chastits At. Yadra 46, 812 (2015).

    Google Scholar 

  27. B. B. Sharma, R. Ayyar, and H. Shing, Phys. Status Solidi A 40, 691 (1977).

    Article  CAS  Google Scholar 

  28. G. Marcano, L. M. Chalbaud, C. Rincon, et al., Mater. Lett. 53, 151 (2002).

    Article  CAS  Google Scholar 

  29. D. Avellaneda, M. T. Nair, and P. K. Nair, J. Thermochem. Soc. 158, 346 (2010).

    Google Scholar 

  30. G. Gurieva, S. Levchenko, S. Schorr, et al., Thin Solid Films 535, 384 (2013).

    Article  CAS  Google Scholar 

  31. K. M. Kim, H. Tampo, and H. Shibata, Thin Solid Films 536, 11 (2013).

    Google Scholar 

  32. Zh. I. Alferov, Usp. Khim. 82, 587 (2013).

    Article  Google Scholar 

  33. M. Meitin, Elektron.: Nauka, Tekhnol. Biznes, No. 6, 40 (2000).

    Google Scholar 

  34. Zh. I. Alferov, M. Andreev, and V.D. Rumyantsev, Fiz. Tekh. Poluprovodn. 38, 937 (2004).

    Google Scholar 

  35. W. Hume-Rothery, Atomic Theory for Students of Metallurgy (Inst. of Metals, London, 1955).

    Google Scholar 

  36. G. R. Gurbanov, Sh. G. Mamedov, M. B. Adygezalova, et al., Russ. J. Inorg. Chem. 62, 1638 (2017). https://doi.org/10.1134/S0036023617120099

    Article  Google Scholar 

  37. Sh. H. Mammadov, A. N. Mammadov, and R. C. Kurbanova, Russ. J. Inorg. Chem. 65, 217 (2020). https://doi.org/10.1134/S003602362001012X

    Article  CAS  Google Scholar 

  38. A. N. Mamedov, E. R. Tagiev, and M. B. Babanly, Inorg. Mater. 52, 543 (2016). https://doi.org/10.1134/S002016851606008X

    Article  CAS  Google Scholar 

  39. S. M. Asadov, S. N. Mustafaeva, and A. N. Mamedov, J. Therm. Anal. Calorim. 133, 1135 (2018). https://doi.org/10.1007/s10973-018-6967-7

    Article  CAS  Google Scholar 

  40. M. B. Babanly and Yu. A. Yusibov, Electrochemical Methods in Thermodynamics of Inorganic Systems (ELM, Baku, 2011) [in Russian].

    Google Scholar 

  41. M. V. Moroz, M. V. Prokhorenko, P. Yu. Demchenko, et al., J. Chem. Thermodyn. 106, 228 (2017).

    Article  CAS  Google Scholar 

  42. A. N. Mammadov, I. D. Alverdiev, Z. S. Aliev, et al., Adv. Intell. Syst. Comput. 1095, 8 (2020). https://doi.org/10.1007/978-3-030-35249-3_118

    Article  Google Scholar 

  43. A. N. Mamedov, Thermodynamics of Systems with Nonmolecular Compounds: Calculation and Approximation of Thermodynamic Functions and Phase Diagrams (Lambert Academic Publishing, Saarbrücken, Germany, 2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sh. G. Mamedov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rzaguliev, V.A., Mamedov, A.N., Kerimli, O.S. et al. Phase Equilibria in the Ag2Se–Cu2SnSe3 and Ag8SnSe6–Cu2SnSe3 Systems. Russ. J. Inorg. Chem. 65, 1899–1904 (2020). https://doi.org/10.1134/S003602362012013X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602362012013X

Keywords:

Navigation