Advertisement

Information Retrieval

, Volume 2, Issue 4, pp 337–360 | Cite as

Matching Index Expressions for Information Retrieval

  • B.C.M. Wondergem
  • P. van Bommel
  • Th.P. van der Weide
Article

Abstract

The INN system is a dynamic hypertext tool for searching and exploring the WWW. It uses a dynamically built ancillary layer to support easy interaction. This layer features the subexpressions of index expressions that are extracted from rendered documents. Currently, the INN system uses keyword based matching. The effectiveness of the INN system may be increased by using matching functions for index expressions. In the design of such functions, several constraints stemming from the INN must be taken into account. Important constraints are a limited response time and storage space, a focus on discriminating (different notions of) subexpressions for index expressions, and domain independency. With these contextual constraints in mind, several matching functions are designed and both theoretically and practically evaluated.

information retrieval similarity index expressions matching 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arampatzis AT, Tsoris T, Koster CHA and van der Weide ThP (1998) Phrase-based information retrieval. Information Processing & Management, 34(6):693–707.Google Scholar
  2. Berger FC (1998) Navigational query construction in a hypertext environment. PhD Thesis, Department of Computer Science, University of Nijmegen.Google Scholar
  3. Brill E (1994) Some advances in rule-based part of speech tagging. In: Proceedings of the Twelfth National Conference on Artificial Intelligence (AAAI-94), Seattle, Wa.Google Scholar
  4. Bruza PD (1993) Stratified information disclosure: A synthesis between information retrieval and hypermedia. PhD Thesis, University of Nijmegen, Nijmegen, The Netherlands.Google Scholar
  5. Bruza PD and van der Weide ThP (1992) Stratified hypermedia structures for information disclosure. The Computer Journal, 35(3):208–220.Google Scholar
  6. Evans DA, Ginther-Webster K, Hart M, Lefferts RG and Monarch I (1991) Automatic indexing using selective NLP and first-order thesauri. In: Lichnerowicz A, Ed., Proceedings of RIAO'91, Barcelona, Spain, pp. 624–643.Google Scholar
  7. Evans D, Lefferts R, Grefenstette G, Handerson S, Hersch W and Archbold S (1992) Clarit trec design, experiments, and results. In: Harman DK, Ed., Proceedings of TREC-1, Gaithersburg, MD, US, pp. 251–286.Google Scholar
  8. Farradane J (1980a) Relational indexing part I. Journal of Information Science, 1(5):267–276.Google Scholar
  9. Farradane J (1980b) Relational indexing part II. Journal of Information Science, 1(6):313–324.Google Scholar
  10. Iannella R, Ward N, Wood A, Sue H and Bruza P (1995) The open information locator project. Technical Report, Resource Discovery Unit, Cooperative Research Centre, University of Queensland, Brisbane, Australia.Google Scholar
  11. Kilpelaïnen P and Mannila H (1993) Retrieval from hierarchical texts by partial patterns. In: Proceedings of the 16th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Pittsburgh, PA, USA, pp. 214–222.Google Scholar
  12. Lucarella D and Zanzi Z (1993) Information retrieval from hypertext: An approach using plausible inference. Information Processing & Management, 29(3):299–312.Google Scholar
  13. Mauldin ML (1989) Retrieval performance in FERRET. In: Proceedings of the ACMSIGIR Conference, pp. 347–355.Google Scholar
  14. Metzler DP and Haas SW (1989) The constituent object parser: Syntactic structure for information retrieval. ACM Transactions of Information Systems, 7(3):292–316.Google Scholar
  15. Salton G and Smith M (1989) On the application of syntactic methodologies in automatic text indexing. In: Proceedings of the ACM SIGIR Conference, pp. 137–150.Google Scholar
  16. Smeaton AF and Sheridan P (1991) Using morpho-syntactic language analysis in phrase matching. In: Lichnerowicz A, Ed., Proceedings of RIAO'91, Barcelona, Spain, pp. 414–430.Google Scholar
  17. Sparck Jones K and Tait JI (1984) Automatic search term variant generation. Journal of Documentation, 40(1):50–66.Google Scholar
  18. Strzalkowski T (1995) Natural language information retrieval. Information Processing&Management, 31(3):397–417.Google Scholar
  19. van Rijsbergen CJ (1975) Information Retrieval. Butterworths, London, United Kingdom.Google Scholar
  20. van der Vet P and Mars NJI (1998) Bottom-up construction of ontologies. IEEE Transactions on Knowledge and Data Engineering, 10(4):513–526.Google Scholar
  21. Wilkinson R and Fuller M (1996) Integrated information access via structure. In: Agosti M and Smeaton A, Eds., Hypertext and Information Retrieval, Kluwer, Boston, U.S.A., pp. 257–271.Google Scholar
  22. Wondergem BCM, van Bommel P and van der Weide ThP (2000) Nesting and defoliation of index expressions for information retrieval. Knowledge and Information Systems, 2(1).Google Scholar
  23. Wondergem BCM, van Uden M, van Bommel P and van der Wei de ThP (1999) INdex navigator for searching and exploring the WWW. Technical Report CSI-R9917, University of Nijmegen, Nijmegen, The Netherlands.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • B.C.M. Wondergem
    • 1
  • P. van Bommel
    • 1
  • Th.P. van der Weide
    • 1
  1. 1.Computing Science InstituteUniversity of NijmegenNijmegenThe Netherlands

Personalised recommendations