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Abstract. The INN system is a dynamic hypertext tool for searching and exploring the WWW. It uses a dynam-
ically built ancillary layer to support easy interaction. This layer features the subexpressions of index expressions
that are extracted from rendered documents. Currently, the INN system uses keyword based matching. The effec-
tiveness of the INN system may be increased by using matching functions for index expressions. In the design of
such functions, several constraints stemming from the INN must be taken into account. Important constraints are a
limited response time and storage space, a focus on discriminating (different notions of) subexpressions for index
expressions, and domain independency. With these contextual constraints in mind, several matching functions are
designed and both theoretically and practically evaluated.
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1. Introduction

Searching large and dynamic information spaces is a difficult task. Many authors have opted
for an approach combining browsing and searching in a hypertext environment (see e.g.
Lucarella and Zanzi (1993), Wilkinson and Fuller (1996) and Bruza and van der Weide
(1992)). The INdex Navigator (INN) (Wondergem et al. 1999) is a dynamic hypertext tool
offering this combined approach for the WWW. The INN uses index expressions (Bruza
and van der Weide 1992) to construct a topic overview based on linguistically motivated
refinements. In this overview, the hyperindex, navigation is used for query formulation.
After formulation, the query (an index expression) is used to render relevant documents.
The INN currently uses existing search engines for rendering, utilising only the terms
(keywords) in the query. Thus, relations between terms, as modeled in the query, largely get
lost. Exploiting similarity measures for index expressions in rendering, e.g. in re-ranking
the documents, would alleviate this problem.

The intended use of the similarity measures in the INN poses a number of constraints on
their design. The documents that are rendered by the search engines are likely to contain
(most of) the required keywords from the query. However,inter-term relations, as modeled
in index expressions, do not have to be satisfied since matching is keyword-based. This may
be repaired by re-ranking the rendered set of documents according to similarity measures
that go beyond keywords. Thus, the similarity measures should focus on inter-term relations
and, consequently, on thehierarchical compositionof index expressions.
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The WWW contains documents on a very wide range of topics. Therefore, the INN has
been designed as adomain independentexploration and search tool. This means that domain
dependent approaches, such as conceptual IR (Mauldin 1989) and coordinated concepts
(van der Vet and Mars 1998), which make heavy use of domain specific knowledge bases,
are not adequately general for our purposes.

The use of thorough (linguistic) analysis is not viable for the INN due to the need for quick
responses and a limited amount of available memory. Since the INN runs on a web server,
it potentially serves many users which may cause an explosion of the required memory.
This especially holds if considerable (linguistic) knowledge is used, for instance in detailed
parsing. Similarity values have to be computed real time, next to rendering documents
form search engines, locating and extracting index expressions from these documents and
parsing them. We thus focus on matching ofbasic syntactic refinement structureof phrases,
as captured in index expressions. In turn, this means that not all ambiguities encountered
in content analysis can be resolved.

The refinements in the hyperindex directly stem from a particular view on the decom-
position of index expressions, or, anotion of subexpressions. For instance, the order of
subexpressions may be deemed relevant in computing the refinements of the hyperindex. In
addition, there are different views on embedding of index expressions. It is envisaged that
the user may select his preferred notion of subexpression for constructing the hyperindex.
Otherwise, the preferred notion may be derived by analysing the (types of) refinements the
user makes during navigational query formulation. In order to render documents consis-
tent with the user’s preferences, the similarity measure used for re-ranking should be in
accordance with the preferred notion of subexpressions.

The presented topic overview in the INN is based on a small subset (10–100 documents)
of the complete collection. Statistics thus only apply to a very small part of the informa-
tion space. As a consequence, (domain dependent) collection statistics cannot be globally
computed. In addition, term weights for the query are not supplied by the INN system. In
this article, therefore, we focus on the core function of our similarity, the structure of index
expressions and provide abstract functions for comparing terms.

The goal of this article is the design of (relatively simple and efficient) similarity measures
that focus on the structure of index expressions. In particular, the order of subexpressions
and different notions of embedding are to be modeled in the similarity measures.

The structure of this article is as follows. In Section 2, our approach is put in the con-
text of other work on linguistically motivated indexing and structural matching. Section 3
introduces two representations of index expressions. In Section 4, elaborates several topics
concerning the contents and structure of index expressions. These topics lead to the design
of several similarity measures for index expressions in Section 5. Section 6 provides an
experimental evaluation of the proposed measures. Finally, Section 7 provides concluding
remarks and directions for further research.

2. Related work

2.1. Obtaining index expressions from text

Currently, the INN system directly extracts index expressions from the titles of the rendered
documents. This produces acceptable results since titles are often in a form which permits
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a ready transformation to index expressions. A similar point of departure is taken in a
closely resembling system, the hyperindex browser (Iannella et al. 1995). A simple parsing
method based on a two-level priority scheme for connectors (Bruza 1993) is used. All
allowed connectors are listed together with their priority. All other words encountered are
interpreted as terms (keywords). A stoplist (list of stopwords) filters out unwanted words
like, for instance, articles and determiners. During parsing, the priority of the connector at
hand determines if the already parsed part of the index expression has to be broadened or
deepened. Thus, no (explicit) linguistic grammar is used by the parser. The parser results
in one parse tree only, thus possibly neglecting different interpretations. A test on the
CACM document collection showed that this parsing method was accurate in approximately
90 percent of the cases.

No additional sources of linguistic knowledge are used in the INN. Although our approach
is rather simplistic and although “syntax by itself cannot resolve the many ambiguities that
complicate the content analysis task” (Salton and Smith 1989), in our view, the advantages
offered by the INN system, augmented with similarity measures for index expressions, pro-
duce a workable balance between keyword based approaches and sophisticated linguistic
analysis.

A more general approach to indexing documents with index expression could make use
of a part-of-speech (POS) tagger and an extractor. For closely related descriptors, called
phrase frames, this approach is described in Arampatzis et al. (1998). Phrase frames are
head-modifier structures in which connectors are (eventually) omitted. After preprocessing
the documents, filtering non-textual parts and moulding the text into acceptable format, the
POS tagger labels words with their part of speech. A well performing POS tagger is described
in Brill (1994). The extractor, which is applied next, uses the POS labels in identifying the
linguistic constructs that should be parsed as index expressions. The extractor uses pattern
matching with regular expressions. An extractor for index expressions would constitute a
subset of the patterns used for phrase frames, albeit augmented with connectors. Finally,
the same parser as above can be used, although more sophisticated parsers are available.
This is, however, not in the scope of this article.

The general architecture of an NLP-IR system advocated by Strzalkowski (1995) also
includes a stemmer. Normalisation at term level (e.g. stemming) is largely orthogonal to
our approach, so possible to include, but not considered in this article. However, we provide
abstract similarity functions for terms and connectors that could be instantiated by measures
that do take, for instance, stemming into account.

Regularisation or syntactical normalisation at phrase level aims at recall enhancement by
reducing syntactical variation (Strzalkowski 1995). For phrase frames, syntactic normali-
sation is described in Arampatzis et al. (1998). This approach can, mutatis mutandis, also
be applied for index expressions since phrase frames closely resemble index expressions.
However, this requires the use of additional linguistic knowledge. We do not elaborate on
this issue here.

Instead of normalising descriptors, systematically generating (all) linguistically moti-
vated alternative variants (Sparck Jones and Tait 1984) has a similar aim. Semantic lin-
guistic knowledge is exploited not to generate invalid variants. Although this restricts the
number of generated variants, this number may explode, especially for complex composed
descriptors. Matching is done via translation of the generated variants into a Boolean query.
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Due to the need for efficient matching in the INN system, we do not generate all variants
of index expressions.

The Constituent Object Parser (Metzler and Haas 1989) also uses syntactic structure
for matching descriptors. It produces binary dependency trees, which indicate (directed)
dependency and scope of relationships between terms. Many different syntactic forms
are represented by this single dependency relation. As a result, ambiguities are retained
in the representation (Strzalkowski 1995). A comparable approach is that of using tree
structured analytics (Smeaton and Sheridan 1991). Both approaches use external sources
of linguistic knowledge and offer at best reasonable efficiency. Index expressions make a
distinction between the “types” of dependency, as given by connectors. Not taking the actual
(contents of) connectors into account, e.g. by allowing wildcard connectors, in matching
normalised index expressions effectuates a similar (directed) notion of dependency. An
intermediate form of dependency, colliding connectors of the same type, is described in
Section 4.1.2.

The CLARIT system (Evans et al. 1991, Evans et al. 1992) integrates several NLP
techniques with the vector space retrieval model. These techniques include morphological
analysis, robust noun-phrase parsing, and automatic construction of first order thesauri.
Construction of the thesauri, used to support the selection of appropriate terms, requires a
substantial (minimally 2GB) sample of documents about a certain topic. Because of limited
response times and available memory, we expect this approach too demanding for our
application.

2.2. Comparing structured descriptors

The similarity measures for index expressions described in Section 5 focus on the structure
of index expressions, i.e., on the way subexpressions are nested. Three similarity measures
are provided: skeleton content, full-product, and a twig-based measure. These measures
represent different views on the order of subexpressions and embedding. Headedness, or
concept modification in head-modifier structure, is considered as well.

In Kilpelaı̈nen and Mannila (1993), a language for querying structured text based on
tree inclusion is described. Their approach, which exploits inclusion patterns to ensure
preservation of binary properties between nodes, takes both structure and content into
account. Example inclusion patterns areL for labels,A for ancestorship, andO for (left-
to-right) ordered tree inclusion.

Our skeleton-content approach resembles their{LAO}-embedding. That is, ancestorship
and ordering are preserved and labels are taken into account. However, our approach does not
require labels to be equal but supports approximate matching by offering abstract similarity
functions for terms and connectors. In the introduction of the mentioned article the authors
indicate that, indeed, such “standard IR techniques should be added to the language”. Our
similarity measures for index expressions capture both aspects by approximation: they are
sensitive to both structure and, by using abstract term comparison functions, content.

Our skeleton-content approach thus ‘preserves’ labels by taking into account their sim-
ilarity. Essentially, it searches for the best{L ′AO}-embedding and delivers the degree of
embedding. A similar line of reasoning shows that our full product approach computes the
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degree of{LA}-embedding. Since in the full product measure the order of subexpressions
is considered irrelevant, the corresponding inclusion patternO is not satisfied.

In Arampatzis et al. (1998), an approach to compare head-modifier structures is described.
Lexico-semantical relations are used in computing the similarity between their binary terms.
Our set based similarity measures for twigs do not explicitly make use of a semantical
network. However, this may be incorporated in our abstractly modeled comparison functions
for terms and connectors. In addition, twigs are tertiary structures, also including information
on the type of connection between head and modifier. Furthermore, we focus on similarities
betweensets oftwigs, rather than on their individual similarities.

3. Index expressions

Index expressions can be represented in several ways (see e.g. Wondergem et al. (to appear)).
Each representation has its own advantages and disadvantages. We use theinductiveand
thestructural representations. These representations describe the same language of index
expressions but differ in denotational properties. Index expressions are based on terms and
connectors. Terms denote keywords, concepts names, adjectives, gerunds, and attribute
values. Connectors denote relations between terms in the form of prepositions (showing
place, position, time, or method) and some present participles (e.g. using, having, and
being).

3.1. Inductive representation

The inductive representation, as described in Definition 3.1, is used since it most basi-
cally describes the (de)composition of index expressions. The underlying idea is that index
expressions can be augmented with subexpressions through connectors, as illustrated in
figure 1. An advantage of such an elementary representation is that it allows several auxil-
iary functions to be readily designed.

Definition 3.1. Let T be a nonempty set of terms andC be a set of connectors such that
T ∩ C = ∅. Then, thelanguage of non-empty index expressionsis defined as:

1. if t ∈ T , thent is a non-empty index expression, and
2. if I andJ are non-empty index expressions andc ∈ C is a connector, thenadd (I , c, J)

is also a non-empty index expression, and
3. no other non-empty index expressions exist.

Figure 1. Basic setup of inductive representation.
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Figure 2. Auxiliary functions on index expressions.

Example 3.1. Single word queries or document representations are modeled by terms.
Example terms areconference, biology, andHolland. Composed index expressions can
be constructed through theadd operator. This also exploits connectors, such asin, with,
and on. For instance, the composed index expressionadd(conference, on, biology) rep-
resents information on a conference on biology. As a more complex example, consider
add(add(conference, on, biology), in, Holland) denoting information on a conference on
biology held in Holland. The semantics of index expressions depends on their structure.
That is, differences in nested subexpressions may cause differences in semantics. As an ex-
ample of this, compare the last index expression with the slightly differentadd(conference,
on, add(biology, in, Holland)). The last one denotes a conference about biology as far as it
is practiced in Holland.

Three auxiliary functions on index expressions are introduced in figure 2. These functions
are used in defining similarity measures. The definitions are formulated in terms of the
inductive definition of index expressions. The functions result in the terms of an index
expression, its connectors, and its head, respectively.

3.2. Structural representation

The inductive representation provides a horizontal decomposition of index expressions:
subexpressions are added on the right. Another representational formalism for index ex-
pressions, called the structural representation, serves better if all subexpressions at a certain
depth have to be addressed at the same time. The structural representation provides a vertical
decomposition of index expressions, allowing a direct and clear look on their structure. The
structural representation is exploited in cases where the order of subexpressions is to be
taken into account. In the structural representation, a composed index expression is denoted
by

h⊗k
i=1 ci (Ii )≡ hc1(I1)..ck(Ik)

whereh is the head and thek subexpressionsIi are connected with the head by connectors
ci . The subexpressions are denoted by the structural representation as well. The composition
operator⊗ provides a notational shorthand.
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Figure 3. Structural representation.

Figure 3 gives a schematic view on the structural representation.

Example 3.2. The two last mentioned index expressions of Example 3.1 are denoted in
the structural representation asconference on (biology) in (Holland) andconference on
(biology in (Holland)), respectively. Note that in the structural representation the differ-
ences in semantics are modeled by brackets.

4. Issues concerning semantics

The index expression

hc1(I1)..ck(Ik)

can be seen as a description of a concept namedh being further refined by relations called
c1..ck and conceptsI1..Ik, respectively.

As a consequence, comparison of both concepts names (contents) as well as the refining
mechanism (structure) will be important issues when matching index expressions. This sec-
tion presents several topics concerning contents and structure that refine the abovementioned
view on the semantics of index expressions.

4.1. Contents

The contents of index expressions is given by their terms and connectors.

4.1.1. Terms. In order to match index expressions, their terms should be compared. There-
fore, we assume a similarity function between terms, denotedsimT : T × T → [0..1]. The
expressionsimT (t, t ′) denotes the similarity between the concepts referred to by termst
andt ′.

The similarity between terms can be obtained in several ways. For instance, it can be
computed by string comparison algorithms such asn-grams, the overlapping substrings
of terms of lengthn. Furthermore, additional lexico-semantical knowledge can be used
taking, for instance, hypernyms and synonyms into account. In IR, stemming is often
performed to reduce morphological variance. We abstract from the particular techniques
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used in computing the similarity and concentrate on using this in computing similarity
between index expressions.

4.1.2. Connectors. Similar to terms, we also assume a similarity functionsimC : C×C→
[0..1] between connectors. This similarity expresses the strength of the relation between
connectors.

The similarity function for connectors can take several aspects into account. For instance,
it can be based on the types of connectors as identified by Farradane (see Farradane (1980a,
b)). In this approach, called relational indexing, connectors model the relationships between
terms. Connectors that model the same relationship could be given a high similarity value.
Furthermore, the priority of connectors within index expressions can be exploited. In ad-
dition, occurrence-frequencies of connectors could be used. Again, we abstract from the
different approaches and focus on exploiting similarity between connectors for matching
index expressions.

4.2. Structure

The structure of index expressions partly determines their semantics and should, therefore,
be taken into account in matching. Three issues concerning structure are considered in this
article: theorder of subexpressions, embedding, andheadedness.

4.2.1. Order of subexpressions.An important question considering the semantics of index
expressions is whether the order of subexpressions is relevant. Consider for example the
following index expressions.

hiking in mountains with friends

hiking with friends in mountains

One may argue that their meaning is equivalent. In other situations, however, there may be
cases in which the order of subexpressions is relevant, i.e., causes a different meaning. For
instance, if the sequential order of paragraphs in a text is represented in an index expression.

The notion of order of subexpressions is formalised by the relationEqOrder as follows.

Definition 4.1. We call two index expressionsI = h⊗k
i=1 ci (Ii ) andJ = h′ ⊗l

j=1 dj (Jj )

equal modulo order, denoted byEqOrder(I , J), iff

1. h = h′, and
2. there exists a projectionπ of [1..k] to [1..l ] such that for all 1≤ i ≤ k it holds that

ci = dπ(i ) andEqOrder(Ii , Jπ(i )).

Two index expressions are equal modulo order iff their heads are equal and (recursively)
the subexpressions of the first are equal modulo order to one of the subexpressions of
the second. The second criterion holds, for instance, for index expressions of which the
subexpressions (recursively) are a permutation of the other’s. In addition, it holds for index
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expressions which contain several copies of the same subexpressions. This is, for instance, il-
lustrated by the index expressionsretrieval of information andretrieval of (information) of
(information). Furthermore, equality modulo order is reflexive. Later in this article, we de-
scribe a matching strategy that computes maximal similarity for index expressions that are
equal modulo order.

4.2.2. Embedding. Embedding or containment plays a prominent role in IR. For example,
an often applied strategy to query-document matching is: if the query is contained or
embedded in a document, then the document is deemed relevant to the query.

Different notions of embedding exist. The subexpression relation for index expres-
sions, for example, defines aconnectedvariant of embedding: a subexpression is a con-
nected part of its superexpressions. For instance,surfing in Holland is a subexpression of
surfing in Holland in November but not a subexpression ofsurfing in sunny Holland. The
subexpression relation (see Wondergem et al. (to appear)) is denoted by4. The expression
I4J means that index expressionI is a subexpression ofJ.

In the abovementioned case,sunny modifies the last termHolland of the path expression
sunny Holland. In our view,surfing in Holland is therefore embedded insurfing in sunny
Holland. To cater for these cases, we exploit a slightly more liberal version of embedment.

Connectedness can, in the context of subexpressions, be described by direct ancestorship,
or, parenthood. This means that for all terms in an index expressionI , their parent must also
be their parent in index expressions in whichI is embedded. Instead of direct ancestorship
we use the notion of (general) ancestorship. This means that index expressionI is embedded
in J iff for all terms in I their ancestors inI are also ancestors inJ.

These considerations are reflected in our notion of embedding of index expressions which
is formalised by an embedment¿ relation as follows.

Definition 4.2. Embedding of index expressions is captured in the binary relation¿,
whereI ¿ J means thatI is embedded in J, which is defined as:

(Same) t ¿ t
(Sub) I ¿ add(J, c, K ) if I ¿ J or I ¿ K
(Split) add(I , c, J)¿ add(K , d, L) if c = d and I ¿ K and J ¿ L
(Stop) no other cases apply

Terms are embedded in themselves, as described by caseSame of Definition 4.2. Case
Sub states that an index expression is embedded in a composed oneadd(J, c, K ), if it is
embedded in either subexpressionJ or K . The third caseSplit shows that a composed index
expressionadd(I , c, J) is embedded in another composed index expressionadd(K , d, L)
if their connectors are equal, the leftmost subexpressionI is embedded in the other leftmost
subexpressionK , and a similar argument holds for the rightmost subexpressionsJ andL.

4.2.3. Headedness.The head of an index expression is considered to be its most important
part. We will address this notion, implemented by head-modifier pairs in Strzalkowski
(1995), asheadedness. The subexpressions modify the main concept stated in the head.
Consequently, the lower terms occur, i.e., deeper with respect to nested expressions, the
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less important they are. This can be taken into account in matching by exploiting the depth
of terms. Multiplying by a factor that is inversely proportional to the depth gives the desired
result. We will indicate how each similarity function described below can be equipped with
such a depth factor.

5. Similarity measures for index expressions

In this section, several similarity measures for index expressions are designed. They vary
from simple measures that only consider the content of index expressions (Section 5.1) to
more comprehensive measures that consider both content and structure (Section 5.2).

5.1. Contents only

Measuring the similarity between index expressions by sets of terms and connectors consid-
ers only their contents, not their structure. Several standard measures for set similarity can
be adopted to provide similarity measures for (the contents of) index expressions. Exam-
ple set measures are the Dice, Cosine, and Jaccard measures (see e.g. Rijsbergen (1975)).
These measures do not use similarity functions for terms and connectors as described in
Sections 4.1.1 and 4.1.2, respectively. Instead, they use set primitives as union, disjunction,
and cardinality which use equality of elements (terms and connectors). The Dice measure,
which normalizes the intersectionA ∩ B with the sum of constituents, the Cosine mea-
sure, relating the overlap of both sets to their geometric average, and the Jaccard measure,
expressing the degree of overlap between two sets as the proportion of the overlap from the
whole, are defined as

Dice(A, B) = 2|A∩ B|
|A| + |B| Cos(A, B) = |A∩ B|√|A| × |B| Jacc(A, B) = |A∩ B|

|A∪ B|

in case the denominator does not equal zero. In case it does, the measures return similarity
value zero.

By considering the (sets of) terms and connectors of index expressions, the set based
measures can be exploited for index expressions. As an example, consider the similarity
measure for index expressions based on the Dice coefficient as shown in figure 4.

The factorα determines the relative influence of terms and connectors on the similarity
value. Forα = 1, only terms are considered and forα = 0 only connectors are taken into
account. Note that a depth factor cannot be taken into account directly since no information
about structure is available in sets of terms.

We say a measure is maximal for certain index expressions if maximal similarity is re-
turned for the descriptors. The Dice measure is not maximal for embedded index expressions

Figure 4. Dice’s similarity measure for index expressions.



MATCHING INDEX EXPRESSIONS 347

nor for subexpressions. Consider, for example, index expressionsurfing in Holland and its
subexpressionHolland. Since the sets of terms and connectors are different, the Dice mea-
sure is not maximal for these index expressions.

5.2. Contents and structure

This section provides three similarity measures that take both content and structure of index
expressions into account. The first measure, coinedfull product, adheres to the idea that the
order of subexpressions is irrelevant for the meaning of index expressions. On the contrary,
the second measure, calledembedded content, deems the order relevant. In addition, em-
bedded content is based on non contiguous embedding. Finally, thetwigsmeasure is based
on decomposing index expressions into elementary connections called twigs.

5.2.1. Full product. The full product similarity measure computes the degree to which
an index expression is equal modulo order with another one. This means that the order of
subexpressions is considered irrelevant. Since the structural representation appears most
appropriate in this case, the full product measure, denoted byFP, is specified by it as
depicted in figure 5.

The full product algorithm, as shown in figure 5, consists of four cases. They can be
readily translated to a functional algorithm using pattern matching. The first caseTerms
computes the similarity between single terms. In caseTop, the embedment of a single term
t in a composed index expressionh ⊗k

i=1 ci (Ii ) is computed by comparingt with headh
since both occur at the same depth.

The third caseTall computes the similarity between two composed index expressions.
Correspondingly to Definition 4.1, this is the product of the similarity between the heads and
the maximum similarity values of the subexpressions ofI with some subexpression ofJ.

The final caseToll gives a penalty for the fact that a composed index expression cannot
be equal modulo order with a term. The returned similarity value is smaller if the mismatch
in size (number of terms) is larger.

Note that the full product measure computes a similarity value layer by layer. That is,
only terms and connectors that occur at the same depth are compared. The full product

Figure 5. Full product algorithm.
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similarity measure is maximal for index expressions that are equal modulo order, as shown
in the following theorem.

Theorem 5.1. EqOrder(I , J)⇒ FP(I , J) = 1.

Proof: The proof is done by structural induction to index expressions. We only investi-
gate the (interesting) case of composed index expressions. SupposeI = h⊗k

i=1 ci (Ii ) and
J= h′ ⊗l

j=1 dj (Jj ) are equal modulo the order of their subexpressions. This means that for
eachhci (Ii ) the maximum valuemax1≤ j≤l FP(hci (Ii ), h′dj (Jj )) = 1 since

1. h = h′, meaningsimT (h, h′) = 1, and
2. for each 1≤ i ≤ k there exists a 1≤ j ≤ l such thatdj = ci andEqOrder(Ii , Jj )

meaning thatsimC(ci , dj ) = 1 and, by the induction hypothesis,FP(Ii , Jj ) = 1.

This means that, for thej of case(2), simT (h, h′) × simC(ci , dj ) × FP(Ii , Jj ) = 1. The
total similarity measure then comes down to1

k

∑k
i=1 1= 1. 2

As a direct consequence of Theorem 5.1, we conclude that the full product similarity
measure is maximal for equal arguments, i.e. thatFP(I , I )= 1. In addition, full product
computes maximal similarity for index expressions of which the subexpressions (recur-
sively) are a permutation of the other’s or occur multiple times.

The full product measure is not maximal for embedded index expressions. Consider, for
example, index expressionssurfing in Holland andsurfing in sunny ◦ Holland. Since the
full product measure computes similarity values layer by layer and the keywordHolland
resides at different depths, the given index expressions are not maximally similar. In addi-
tion, the full product measure is not maximal for subexpressions. Illustrating this, consider
Holland andsurfing in Holland. Since the heads of both index expressions are unequal, the
full product measure is not maximal.

FPd
(
h⊗k

i=1 ci (Ii ), h
′ ⊗l

j=1 dj (Jj )
)

= simd,T (h, h
′)× 1

k

k∑
i=1

max1≤ j≤l simd+1,C(ci , dj )× FPd+1(Ii , Jj ) (1)

The depth factord can be incorporated in the full product algorithm (figure 5) by replacing
caseTall by Eq. (1). Note that it is only shown how the depth factor is to be correctly
computed in this case. Multiplying each case by a factor inversely proportional to this depth
factor takes headedness into account.

5.2.2. Embedded content.The embedded contentmeasure (see figure 6) computes the
best way in which an index expression can be embedded (as defined in Definition 4.2) in
another one. This means that the order of subexpressions is considered relevant. This eases
the use of the inductive representation of index expressions and thus enables an elementary
decomposition of index expressions.

The cases considered by the embedded content measure are the same as for the full product
measure. The caseTerms of figure 6 is exactly the same as for full product and calls the
similarity function for termssimT . The second caseTop states that the degree to which a term
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Figure 6. Embedded content algorithm.

t is embedded in a composed index expressionadd(I , c, J) is equal to the maximal similarity
to one of the subexpressionsI and J. CaseTall computes the strength of embedding of
a composed index expressionadd(I , c, J) in another oneadd(K , d, L). It computes the
maximum similarity of the following three cases: (1)add(I , c, J) is completely embedded in
the leftmost subexpressionK , (2) it is completely embedded in the rightmost subexpression
L, and (3) subexpressionI is embedded inK , subexpressionJ is embedded inL, and
connectorsc andd are similar. As before, caseToll gives a penalty for mismatch since
composed index expressions can never be embedded in terms.

The embedded content measure is maximal for embedded index expressions, as stated
more formally in the next theorem.

Theorem 5.2. I ¿ J ⇒ EC(I , J) = 1.

Proof: The theorem is proven by induction on the structure of index expressions. Suppose
I ¿ J.

Basis. SupposeI is a termt . Only the first two cases of Definition 4.2 of embedded content,
Same andSub, are to be examined since the third caseSplit cannot apply (I cannot be
composed).

Same: Suppose this case of Definition 4.2 applies. Then,J= I = t and consequently
EC(I , J) = simT (I , J) = 1.

Sub: Suppose this case applies which means thatJ is composed, sayadd(K , c, L)
and thus thatt ¿ K or t ¿ L. Combining this with the induction hypothesis
implies thatEC(t, K ) = 1 or EC(t, L) = 1. This means that, by caseTop of the
embedded content algorithm,EC(I , J) = 1.

Induction step. SupposeI is a composed index expression, sayadd(K , c, L) . Further-
more, without loss of generality, letJ = add(M, d, N). Now, only casesSub andSplit
of Definition 4.2 need to be examined. Both result inEC(I , J) = 1:
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Sub: Here, we have (1)I ¿M implying EC(I ,M)= 1 or (2) I ¿ N which means that
EC(I , N)= 1. Since caseTall of the algorithm is applied, which computes the
maximum of these cases, both options causeEC(I , J)= 1.

Split: In this case, we have thatc= d, K ¿M , and L¿ N. By the induction hy-
pothesis, this implies thatEC(K ,M)= 1 and EC(L , N)= 1. Together with
simC(c, d)= 1 this causes caseTall of the embedded content algorithm to com-
puteEC(I , J)= 1.

We have shown that in all possible cases in whichI is embedded inJ the embedded content
measure computesEC(I , J) = 1. 2

The embedded content measure is also maximal for subexpressions. This stems from the
observation that every index expression that is a subexpression of another is also embedded
in it. This, in turn, follows from the observation that in the subexpression relation, direct
ancestorship is preserved, which is stricter than the general ancestorship which is preserved
by the embedment relation. In addition, the embedded content measure is maximal for
equal arguments, since every index expression is embedded in itself, i.e. embedment is
reflexive.

The embedded content measure is not maximal for index expressions that are equal
modulo order. Consider, for example, the following pair of index expressions that are
equal modulo the order of their subexpressions:I = conference on (biology) in (Holland)
andJ= conference in (Holland) on (biology). Since in the embedded content measure the
order of subexpressions is relevant, index expressionsI andJ are not maximally similar.

ECd(add(I , c, J), add(K , d, L))

= ECd(I , K )× simd+1,C(c, d)× ECd+1(J, L) (2)

The depth factord can be incorporated in the inductive representation by the scheme of
Eq. (2). Note that the rightmost subexpressionsJ andL reside one layer deeper than the
head.

5.2.3. Twigs. Thetwigs(see Berger (1998)) of an index expression are its subexpressions
that consist of exactly two terms and one connector. Twigs are the elementary connections
in the concept graph which is formed by an index expression. Twigs have essentially the
same structure as the head-modifier pairs described in Strzalkowski (1995), except that they
also contain a connector. Twigs enable us to form a global picture about similarity while
focusing in on the elementary refinements.

To denote subexpressions of size two, we use the subexpression relation as described in
Section 4.2.2.

twigs(I ) = {tct′ | tct′4 I }

Twigs can be defined constructively in terms of the inductive representation of index ex-
pressions. This shows that the twigs of an index expression can be produced by a straightfor-
ward syntactic process. Below, twigs are accompanied by their depth factor, modeled by a
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positive integer. Since the head of an index expression is assigned depth one, the expression
twigs(I , 1), according to the definition below, computes the twigs ofI with their correct
depths.

twigs(t, d) = ∅
twigs(add(I , c, J), d) = {(add(Head(I ), c,Head(J)), d)}

∪ twigs(I , d) ∪ twigs(J, d + 1)

Single terms do not contain subexpressions of size two and thus have no twigs. Composed
index expressionsadd(I , c, J) lead to at least one twig:Head(I ) cHead(J). Additional
twigs may result from the subexpressions, as modeled by the recursive calls.

As observed in Berger (1998), twigs conserve most of the structure of index expressions.
In fact, if all terms are different the complete structure can be correctly reconstructed without
any additional information. For twigs with depth factor, this can be relieved further to all
terms at the same depth should be different.

Twigs of index expressions seem to resemble tri-grams for strings. Considerations similar
to tri-grams are therefore expected to hold for twigs. For instance, an advantage of the use
of twigs over equality-matching is their robustness for ‘spelling variations’. For example,
if to index expressions are equal modulo order, then their twigs are the same, as stated in
the following lemma.

Lemma 5.1. EqOrder(I , J)⇒ twigs(I , 1) = twigs(J, 1).

Set-based approaches, described for terms in Section 5.1, can also be equipped with twigs.
Instead of calling the set based approaches with sets of terms or connectors as arguments,
the (sets of) twigs are used. This yields similarity measures using twigs. As an example,
the Dice measure for twigs is defined as

Dice-twigs(I , J) = Dice(twigs(I , 1), twigs(J, 1))

The Dice measure for twigs is maximal for index expressions that are equal modulo order
and for identical index expressions, since their twigs are equal.

The Dice measure for twigs is not maximal for embedded index expressions nor or
subexpressions. This is illustrated by, for instance, index expressionssurfing in Holland
andHolland.

6. Experimental evaluation

Subexpressions are the basic notion on which the hyperindex is generated. The INN system
thus heavily uses subexpressions. We therefore evaluate how the different similarity mea-
sures behave in the context of subexpressions. A number of experiments, described in this
section, give insight in this matter.

The experiments exploit a non-trivial index expression (see figure 7(a)) consisting of
11 terms nested in subexpressions of different forms. The similarity between this index
expression and all its subexpressions was computed, according to the different similarity
measures. Both contiguous and non-contiguous (e.g.workshop during November) subex-
pressions were generated from the original. In total, the experiment featured 439 such
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Figure 7. (a) Index expression used for experiments. (b) Overview of similarity measures.

subexpressions. Similar tests may be performed with other notions of subexpressions. For
instance, the order of subexpressions may be varied.

Figure 7(b) gives an overview of the different similarity measures. The graphs provided
in this figure serve as reference for the next sections. Not all set-based measures are provided;
the Dice measure (for terms and twigs) is given as representative. For several reasons,
the subexpressions on thex-axis are sorted according to their similarities such that non-
increasing graphs are obtained. Sorting similarities non-increasingly and therefore grouping
together subexpressions that are equally similar to the original index expression in intervals,
clearly shows the results of the similarity measures. For instance, without the sorting,
different measures in the same graph would be hard to distinguish. Furthermore, since
subexpressions within the same interval have the same similarity value, intervals rather
than the positions on thex-axis should serve as indication of the ordering. For instance,
the number of intervals gives an indication of the granularity of the measure. We therefore
compare similarity measures by examining differences between their intervals. The order
of subexpressions on thex-axis may be different for different similarity measures since
we sort non-increasingly per measure. The different orders per measure are not explicitly
visualised in the graphs. Therefore, our examination used detailed information, as kept in
the test results, next to the graphs. The differences between the measures are examined in
the rest of this section.

In our experiments, we examine differences between similarity measures by imposing
the order of one similarity measure (the so called dominant measure) onto other similarity
measures (the subordinate measures). That is, the order of subexpressions on thex-axis
is set to conform to the non increasing order of the dominant measure. According to this
ordering, the subordinate measures are plotted. In this way, the differences in ordering are
visualised.

Figure 8 gives a generic sketch of the graphs that resulted from the experiments. In
this figure, the solid line depicts the similarity values of the dominant measure. In later
figures, where actual similarity measures are used, the line of the dominant measure equals
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Figure 8. Generic sketch of results.

its similarity graph of figure 7(b): the subexpressions on thex-axis are sorted such that a
non-increasing line for the dominant measure is obtained. According to this dominant or-
dering, the subordinate measures are plotted. Note that the example dominant measure has
three horizontal plateaus, i.e. intervals of subexpressions that all receive the same similarity
value, or, which are not discriminated by the dominant measure. For subexpressions out of
the same plateau, the differences in positions on thex-axis are thus irrelevant to the dom-
inant measure. However, a subordinate measure may assign different similarity values to
subexpressions out of the same dominant plateau. Therefore, we re-sort subexpressions per
dominant plateau according to subordinate measures. In this way, we obtain non-increasing
graphs for the subordinate measures per dominant plateau. Note that the number of subor-
dinate plateaus may differ per dominant plateau. However, this number at most equals the
number of plateaus in the original graph of the subordinate measure of figure 7(b). As a
result of sorting non-increasingly, all peaks in subordinate graphs occur at the beginning of
dominant plateaus. The form of actual graphs provided later conforms to the generic sketch
of figure 8 but has much finer granularity because of more and smaller plateaus.

We first compare the measures that use both content and structure: the full product,
embedded content, and set based measure for twigs. In Sections 6.1 and 6.2, respectively,
the full product and embedded content are used as primary measure. Set-based measures
for twigs are compared in Section 6.3.

6.1. Full product

The results of imposing the full product ordering onto the embedded content and Dice’s
measure for twigs are shown in figure 9. The three measures define different orderings, as
can be concluded from the many peaks (embedded content) and drops (Dice-twigs) with
respect to their original lines in figure 7(b).
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Figure 9. Full product order imposed.

The ordering imposed by full product is related to the removal of leaves starting at
maximal depth, or, a layer by layer (bottom up) defoliation. Thus, the full product measure
scores high if the heads are (recursively) equal. In other words, a subexpression that equals
a topmost (layer by layer) part of the original gets a high score. Full product thus demands
the main concepts to be equal and is less sensitive for modification of the most specific
(maximal depth) modifiers. The gradually decreasing graph of the full product measure
combined with its high granularity implies that this measure delicately distinguishes most
subexpressions.

The rightmost interval of full product is a large zero-plateau. In this large interval, the sub-
ordinate measures resemble their original graphs of figure 7(b). Inspection of the test results
showed that the subexpressions in this plateau, compared to the original, either have a differ-
ent head or contain a single subexpression that has a different head. For comparing index ex-
pressions that represent different main concepts, the full product measure is thus inadequate.

In general, each full product interval shows a peak for embedded content and a drop for
the Dice measure for twigs. By examining which subexpressions cause these drops and
peaks, the differences between the measures are studied.

Basically, two types of subexpressions cause the peaks for the embedded content measure.
Of both types, a stereotypical example is investigated. Consider, for instance, the peak in
figure 9 that occurs at position 43, having similarity value 0.5. The subexpression causing
this peak consists of 10 terms, missing only the depth two leafAmsterdam. However, full
product favours subexpressions which are obtained by removing leaves at larger depth. The
many possibilities to construct subexpressions in this way makes that full product has many
higher scoring subexpressions. As concluded from analysing the test results, embedded
content would have placed it in the interval at positions 2–5 of figure 7(b). The removal
of the highest leaf (i.e.Amsterdam) is, to embedded content, similar to removing a leaf at
largest depth, such asdisk. Similar subexpressions cause the peaks at positions 17, 80, 101,
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and 171. Thus, when the influence of concept modification is desired to gradually decrease
with depth, full product is a better measure than embedded content.

Another type of subexpression causes the peak at position 277, which is visually some-
what obscured by a simultaneous drop in the graph of the Dice-twig measure. This peak of
similarity value 0.25 is surrounded by values of 0.09. It is caused by an index expression
that does not haveworkshop as head, but has a large embedded subexpression consisting
of 7 terms. Since the main concepts are different, full product scores it low. However, em-
bedded content scores it higher and resorts it to the beginning of the value zero interval.
Embedded content, by its own order, would have placed it in the interval at positions 2–5.
Thus, full product, more strongly than embedded content, targets at equal main concepts.

The drop in Dice’s graph at position 68 to similarity value 0.375 is caused by a non-
contiguous subexpression, five of whose six twigs do occur in the original. Full product, by
its layer by layer computation, does not favour non-contiguous (layer skipping) subexpres-
sions. A similar argument applies to the drops at positions 133, 214 and 263. Twig based
measures thus are more robust for slightly differing non-contiguous subexpressions than
full product.

Dice’s drop to thex-axis at position 271 is caused by the single termworkshop which
consists of the head of the original index expression only. As stated before, single terms
have no twigs and Dice’s twig measure thus returns value zero.

6.2. Embedded content

The second experiment imposes the embedded content order onto the full product and Dice
measure for twigs. The results are given in figure 10. Consider the line of the embedded con-
tent measure. A striking feature is the large rightmost plateau, stemming from the following.

Figure 10. Embedded content order imposed.
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We computed the embedment of the original index expression in its subexpressions, not the
other way around since this would result in maximal embedment for all subexpressions.
Thus, the embedding of the original is computed in (the components of) the subexpres-
sions. For many subexpressions, this eventually results in the embedding of the original
in the single terms of the subexpression. This, in turn, results in a constant value which is
inversely proportional to the size of the original. As a consequence, embedded content is in
this context best used for discriminating between highly similar subexpressions.

In general, the order imposed by embedded content is relative to the removal of terms,
irrespective of their depth. For instance, removingAmsterdam or disk results in equally
similar subexpressions. Thus, embedded content makes no distinction to the specificity
(depth) of the removed term. As a consequence, it is not so sensitive for the removal or
addition of a complete modification (subexpression). This makes the embedded content
measure suitable for matching queries with rich document characterisations.

After position 88, the graphs of full product and Dice-twigs seem to equal their original
graphs of figure 7(b). This is caused by the large dominant plateau, starting at that position,
which, by resorting the subordinate measures, ensures that all the subexpressions are in the
same order as in their original graph. Differences with their original graphs are caused by
subexpressions that are placed in the last interval by the dominant measure but not by the
original order of the subordinate measure, or vice versa.

A number of stepwise drops occur in the line of full product in figure 10. For instance, full
product drops to zero at positions 22, 23, and 84–87. This is caused by subexpressions with
different heads. As was also observed for the first experiment, embedded content is more
robust to changes in the main concept. The downward steps towards value zero are caused
by subexpressions that miss several terms, but preserve other parts of subexpressions.

Dice’s twig measure shows a clear drop at position 65, which is caused by a (rather small)
non-contiguous subexpression which has only a few twigs in common with the original.
However, embedded content, being more robust to non-contiguous subexpressions, ranks it
relatively high. A similar argument holds for the drops at positions 22 and 87. Thus, highly
non-contiguous subexpressions are still recognised as relevant by embedded content.

6.3. Set-based twig similarity

In the final experiment, we compared set-based approaches for terms with those for twigs.
In particular, the Dice measure for terms is used as baseline for comparison with the Dice,
Jaccard, and Cosine measures for twigs. Figure 11 provides an overview of the used set-
based measures, each measure being non increasingly ordered as was done for the other
measures in figure 7(b).

In our experiments, twig based measures have finer granularity than term based measures.
This is concluded from the number of intervals imposed by these measures. The set based
measures divide the subexpressions in classes (intervals) corresponding to the number
of constituents in common with the original. As can be seen from figure 11, the Dice
measure for terms has 10 intervals forα = 1.0 (i.e. no connectors considered) and 20 for
α = 0.5. The measures for twigs each have 26 intervals. This number directly depends on the
number of different twigs that can be generated from the subexpressions. Since we included
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Figure 11. Set-based approaches for terms and twigs.

non-contiguous subexpressions in our experiment, new twigs are introduced that are not in
the original. The original index expression has 10 twigs thus leaving room for 16 newly
introduced twigs. This suggests that twig based measures should be favoured over term
based measures if delicate matching is required.

The lines for the twig-based measures eventually drop to zero whereas the term-based
measure does not. The reason for this is that single terms do not result in twigs although every
(non-empty) subexpression has a minimal overlap of at least one term with the original.
Clearly, twig based measures should thus not be used for matching single terms. The minimal
similarity value according to Dice for terms (forα = 1.0) is 2×1

11+1 = 0.167.
In order to further compare the set-based approaches, the Jaccard ordering for twigs was

imposed on the others. Figure 12 shows the results. Dice and Jaccard for twigs impose
the same ordering: they have exactly the same intervals. As can thus be concluded from
the definitions of these measures (see Section 5.1), in comparing two subexpressions, no
distinction (in terms of the ordering) is made between the sum of twigs and the number
of different twigs. Their similarity values, however, differ in size. This basically means
that, practically, the differences between both measures can be overcome by using rightly
set thresholds. The Cosine measure for twigs has closely resembling intervals: of its 26
intervals, only six differ slightly (maximally nine subexpressions).

There is a big difference between set-based approaches for terms and those for twigs,
since terms do not capture structure. The peaks in the line of Dice’s term measure (figure 12)
are caused by non-contiguous subexpressions, not having many twigs in common. Irrespec-
tive of their structure, however, they share terms with the original. Clearly, when the structure
of descriptors is to be taken into account, twig based measures are more suitable than term
based measures.

The experiments illustrated characteristics of the different similarity measures. A number
of conclusions can be drawn. First, approaches only using terms should be avoided if
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Figure 12. Jaccard (twigs) order imposed.

the structure of descriptors is relevant. This is what one would expect, as well as that
set based measures using terms provide less granularity than those using twigs. Second,
the different criteria about subexpressions resulted in similarity measures with distinct
properties. The layer by layer computation of the full product measure, derived from the
idea of headedness, favours descriptors that only differ in their most specific subexpressions.
However inadequate for comparing index expressions that represent different main concepts,
it naturally supports delicate discrimination of most subexpressions and a gradual notion
of concept modification. The embedded content measure is not sensitive to the depth of the
deleted subexpression. Furthermore, since it is based on embedding, it is more robust to non-
contiguous subexpressions. Embedded content is, in the context of our experiments, best
used for discriminating highly similar subexpressions. Twig based measures fall somewhere
in between. They are somewhat sensitive to non-contiguous subexpressions: this introduces
new twigs, but may preserve other twigs. There is little difference between twig based
measures themselves. It appears mainly a matter of thresholds, viz size of the similarity
values, to distinguish between them.

7. Conclusions

In this article, we devised several similarity measures for index expressions aiming at use
in a dynamic hypertext system, the INN system. This envisaged application implied our
focus on different notions of subexpressions for index expressions and several constraints
concerning high efficiency, domain independency, and restricted memory. These constraints
prohibit the use of sophisticated natural language processing techniques. However, several
issues on the semantics of index expressions and corresponding notions of subexpressions
were formulated in criteria. These issues were the order of subexpressions, non contiguous
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embedding, and headedness. The devised similarity measures were both theoretically and
experimentally evaluated showing their suitability for the mentioned criteria. Although the
experiments described in this article are rather small, they illustrate some of the essential
characteristics of the similarity values.

Future research can be directed towards augmenting index expressions with wildcards
and the design of corresponding matching functions. This could aim at using the structure
of index expressions for fact finding and the generation of partly specified overviews. In
the augmented language, descriptors likeflying from Tasmania to * can be used to find all
documents that deal with air transport from the island of Tasmania to any destination.

Furthermore, it would be interesting to see if our approach is also viable for other retrieval
related tasks such as clustering, routing, and filtering. This would enable an augmentation
of the functionality of the INN system. For instance, the INN system could then present
grouped results or it could work off-line by using stable information needs in the case of
filtering.

It is also interesting to investigate different instantiations of the abstract term and con-
nector comparison functions. For instance, stemming could be included by computing the
similarity of stems. In addition, connectors can be grouped by their function type. In match-
ing, connectors with the same function could be given higher similarity.

Including term weights potentially increases the effectiveness of matching. We did not
focus on this issue here since it is not primarily concerned with the structure of index
expressions. However, it seems a valuable extension worth further research.
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