Skip to main content
Log in

Intracellular Calcium Protects against Oxidant Injury in Cardiac Muscle: Possible involvement of Intracellular Zinc

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Reperfusion injury in ischemic myocardium may be caused by neutrophil oxidants such as hypochlorous acid (HOCl). In view of the close association between intracellular Ca2+ ([Ca2+]i) and cellular injury, we examined the ability of [Ca2+]i to affect HOCl injury in cardiac muscle. [Ca2+]i was modulated by bathing isolated, isometrically contracting, rat papillary muscles in normal (2.5 mM), low (0.5 mM), or high (5.0 mM) extracellular Ca2+ ([Ca2+]o), or with 1 µM nifedipine, an L-type Ca2+ channel antagonist, and 1 µM Bay K8644, an L-type Ca2+ channel agonist. In normal [Ca2+]o, HOCl (300 µM) caused a rapid decline in contractile function, the onset of contracture, and a decrease in protein sulfhydryl levels (P-SH). Ryanodine, an inhibitor of the sarcoplasmic reticulum Ca2+ release channel, protected against injury. Dithiothreitol (DTT) partially restored the lost function and P-SH. Lowering the [Ca2+]i with low [Ca2+]o or nifedipine resulted in a surprising potentiation of HOCl injury, and the inhibition of DTT-induced recovery. Raising [Ca2+]i with high [Ca2+]o or Bay K8644 resulted in protection against injury. Our previous studies have demonstrated an HOCl-induced increase in [Zn2+]i. Since Ca2+ can protect against the intracellular effects of Zn2+, we therefore propose that HOCl injury may be caused by the binding of mobilized Zn2+ to P-SH, and that increased [Ca2+]i protects against this injury Our data therefore provide an explanation for the lack of clinical efficacy of Ca2+ channel blockers with early phase acute myocardial infarction, and may therefore have significant clinical implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jeroudi MO, Hartley CJ, Bolli R. Myocardial reperfusion injury: Role of oxygen radicals and potential therapy with antioxidants. Am J Cardiol 1994;73:2B–7B.

    Google Scholar 

  2. Shandelya SML, Kuppusamy P, Weisfeldt ML, Zweier JL. Evaluation of the role of polymorphonuclear leukocytes on contractile function in myocardial reperfusion injury: Evidence for plasma-mediated leukocyte activation. Circulation 1993;87:536–546.

    Google Scholar 

  3. Tanaka M, Brooks SE, Richard VJ, FitzHarris GP, Stoler RC, Jennings RB, Arfors K-E, Reimer KA. Effect of anti–CD18 antibody on myocardial neutrophil accumulation and infarct size after ischemia and reperfusion in dogs. Circulation 1993;87:526–535.

    Google Scholar 

  4. Rosen GM, Pou S, Ramos CL, Cohen MS, Britigan BE. Free radicals and phagocytic cells. FASEB J 1995;9:200–209.

    Google Scholar 

  5. Fliss H. Oxidation of proteins in rat heart and lungs by polymorphonuclear leukocyte oxidants. Mol Cell Biochem 1988;84:177–188.

    Google Scholar 

  6. Schraufstätter IU, Browne K, Harris A, Hyslop PA, Jackson JH, Quehenberger O, Cochrane CG. Mechanisms of hypochlorite injury of target cells. J Clin Invest 1990;85:554–562.

    Google Scholar 

  7. Weiss SJ, Klein R, Slivka A, Wei M. Chlorination of taurine by human neutrophils. Evidence for hypochlorous acid generation. J Clin Invest 1982;70:598–607.

    Google Scholar 

  8. Suematsu M, Kurose I, Asako H, Miura S, Tsuchiya M. In vivo visualization of oxyradical-dependent photoemission during endothelium-granulocyte interaction in microvascular beds treated with platelet-activating factor. J Biochem 1989;106:355–360.

    Google Scholar 

  9. Weiss SJ. Tissue destruction by neutrophils. N Engl J Med 1989;320:365–376.

    Google Scholar 

  10. Kukreja RC, Weaver AB, Hess ML. Stimulated human neutrophils damage cardiac sarcoplasmic reticulum function by generation of oxidants. Biochim Biophys Acta 1989; 990:198–205.

    Google Scholar 

  11. Eley DW, Korecky B, Fliss H, Désilets M. Calcium homeostasis in rabbit ventricular myocytes: Disruption by hypochlorous acid and restoration by dithiothreitol. Circ Res 1991;69:1132–1138.

    Google Scholar 

  12. Tatsumi T, Fliss H. Hypochlorous acid mobilizes intracellular zinc in isolated rat heart myocytes. J Mol Cell Cardiol 1994;26:471–479.

    Google Scholar 

  13. Turan B, Fliss H, Désilets M. Oxidants increase intracellular free Zn21 concentration in rabbit ventricular myocytes. Am J Physiol 1997;272:H2095–H2106.

    Google Scholar 

  14. Eley DW, Korecky B, Fliss H. Dithiothreitol restores contractile function to oxidant-injured cardiac muscle. Am J Physiol 1989;257:H1321–H1325.

    Google Scholar 

  15. Eley DW, Eley JM, Korecky B, Fliss H. Impairment of cardiac contractility and sarcoplasmic reticulum Ca21 ATPase activity by hypochlorous acid: Reversal by dithiothreitol. Can J Physiol Pharmacol 1991;69:1677–1685.

    Google Scholar 

  16. Goldhaber JI, Weiss JN. Oxygen free radicals and cardiac reperfusion abnormalities. Hypertension 1992;20:118–127.

    Google Scholar 

  17. Ferrari R, Albertini A, Curello S, Ceconi C, Di Lisa F, Raddino R, Visioli O. Myocardial recovery during post-ischaemic reperfusion: effects of nifedipine, calcium and magnesium. J Mol Cell Cardiol 1986;18:487–498.

    Google Scholar 

  18. Morris JC. The acid ionization constant of HOCL from 5 to 35 degrees. J Phys Chem 1966;70:3798–3805.

    Google Scholar 

  19. Sedlak J, Lindsay RH. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent. Anal Biochem 1968;25:192–205.

    Google Scholar 

  20. Schouten VJ, van Deen JK, de Tombe P, Verveen AA. Forceinterval relationship in heart muscle of mammals. A calcium compartment model. Biophys J 1987;51:13–26.

    Google Scholar 

  21. Lewartowski B, Pytkowski B. Cellular mechanism of the relationship between myocardial force and frequency of contractions. Prog Biophys Mol Biol 1987;50:97–120.

    Google Scholar 

  22. Zaidi NF, Lagenaur CF, Abramson JJ, Pessah I, Salama G. Reactive disulfides trigger Ca21 release from sarcoplasmic reticulum via an oxidation reaction. J Biol Chem 1989; 264:21725–21736.

    Google Scholar 

  23. Ytrehus K, Rotevatn S, L:vaas E, Saetersdal T, Mj:s OD. Mitochondrial calcium in hearts subjected to lipid peroxidation with contracture development. Basic Res Cardiol 1989;84:646–652.

    Google Scholar 

  24. Josephson RA, Silverman HS, Lakatta EG, Stern MD, Zweier JL. Study of the mechanisms of hydrogen peroxide and hydroxyl free radical-induced cellular injury and calcium overload in cardiac myocytes. J Biol Chem 1991;266:2354–2361.

    Google Scholar 

  25. Fukui K, Kaneda M, Takahashi E, Washio M, Doi K. Protective effects of sulfhydryl compounds on HOCL-induced intracellular Ca21 increase in single rat ventricular myocytes. J Mol Cell Cardiol 1994;26:455–461.

    Google Scholar 

  26. Kuroda M, Kaminishi T, Uchida K, Miyazawa K, Tomoike H, Doi K. Ca21 increase and pH decrease induced by hypochlorous acid in single quiescent myocytes isolated from rat ventricles. Jpn J Physiol 1995;45:619–630.

    Google Scholar 

  27. Atar D, Backx PH, Appel MM, Gao WD, Marban E. Excitation–transcription coupling mediated by zinc influx through voltage-dependent calcium channels. J Biol Chem 1995; 270:2473–2477.

    Google Scholar 

  28. Kim RS, Sukhu B, LaBella FS: Lipoxygenase-induced lipid peroxidation of isolated cardiac microsomes modulates their calcium-transporting function. Biochim Biophys Acta 1988;961:270–277.

    Google Scholar 

  29. Fliss H, Ménard M. Hypochlorous acid-induced mobilization of zinc from metalloproteins. Arch Biochem Biophys 1991; 287:175–179.

    Google Scholar 

  30. Fliss H, Ménard M. Oxidant-induced mobilization of zinc from metallothionein. Arch Biochem Biophys 1992;293: 195–199.

    Google Scholar 

  31. Fliss H, Ménard M, Desai M. Hypochlorous acid mobilizes cellular zinc. Can J Physiol Pharmacol 1991;69:1686–1691.

    Google Scholar 

  32. Tatsumi T, Fliss H. Hypochlorous acid and chloramines increase endothelial permeability: Possible involvement of cellular zinc. Am J Physiol 1994;267:H1597–H1607.

    Google Scholar 

  33. Vallee BL, Auld DS. Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry 1990;29:5647–5659.

    Google Scholar 

  34. Kröncke K-D, Fehsel K, Schmidt T, Zenke FT, Dasting I, Wesener JR, Bettermann H, Breunig KD, Kolb-Bachofen V. Nitric oxide destroys zinc-sulfur clusters inducing zinc release from metallothionein and inhibition of the zinc fingertype yeast transcription activator LAC9. Biochem Biophys Res Commun 1994;200:1105–1110.

    Google Scholar 

  35. Nayler WG, Anderson JE. Effects of zinc on cardiac muscle contraction. Am J Physiol 1965;209:17–21.

    Google Scholar 

  36. Kwok W-M, Kass RS. Block of cardiac ATP-sensitive K1 channels by external divalent cations is modulated by intracellular ATP: Evidence for allosteric regulation of the channel protein. J Gen Physiol 1993;102:693–712.

    Google Scholar 

  37. Hanck DA, Sheets MF. Extracellular divalent and trivalent cation effects on sodium current kinetics in single canine cardiac Purkinje cells. J Physiol (Lond) 1992;454:267–298.

    Google Scholar 

  38. Schild L, Moczydlowski E. Competitive binding interaction between Zn21 and saxitoxin in cardiac Na1 channels. Evidence for a sulfhydryl group in the Zn21/saxitoxin binding site. Biophys J 1991;59:523–537.

    Google Scholar 

  39. Murakami K, Whiteley MK, Routtenberg A. Regulation of protein kinase C activity by cooperative interaction of Zn21 and Ca21. J Biol Chem 1987;262:13902–13906.

    Google Scholar 

  40. Henao F, Gutierrez-Merino C: Inhibition of the sarcoplasmic reticulum (Ca211Mg21)-ATPase by Zn(II). Biochim Biophys Acta 1989;984:135–142.

    Google Scholar 

  41. Föhr UG, Heizmann CW, Engelkamp D, Schäfer BW, Cox JS. Purification and cation binding properties of the recombinant human S100 calcium-binding protein A3, an EF-hand motif protein with high affinity for zinc. J Biol Chem 1995;270:21056–21061.

    Google Scholar 

  42. Picello E, Damiani E, Margreth A. Low-affinity Ca21-binding sites versus Zn21-binding sites in histidine-rich Ca21–binding protein of skeletal muscle sarcoplasmic reticulum. Biochem Biophys Res Commun 1992;186:659–667.

    Google Scholar 

  43. Abramson JJ, Trimm JL, Weden L, Salama G. Heavy metals induce rapid calcium release from sarcoplasmic reticulum vesicles isolated from skeletal muscle. Proc Natl Acad Sci USA 1983;80:1526–1530.

    Google Scholar 

  44. Bers DM, Langer GA. Uncoupling cation effects on cardiac contractility and sarcolemmal Ca21 binding. Am J Physiol 1979;237:H332–H341.

    Google Scholar 

  45. Beinfeld MC, Bryce DA, Kochavy D, Martonosi A. The binding of divalent cations to myosin. J Biol Chem 1975;250:6282–6287.

    Google Scholar 

  46. Ikemoto N, Nagy B, Bhatnagar GM, Gergely J. Studies on a metal-binding protein of the sarcoplasmic reticulum. J Biol Chem 1974;249:2357–2365.

    Google Scholar 

  47. Wakabayashi S, Shigekawa M. Effect of metal bound to the substrate site on calcium release from the phosphoenzyme intermediate of sarcoplasmic reticulum ATPase. J Biol Chem 1987;262:11524–11531.

    Google Scholar 

  48. Ciofalo FR, Thomas LJ Jr. The effects of zinc on contractility, membrane potentials, and cation content of rat atria. J Gen Physiol 1965;48:825–839.

    Google Scholar 

  49. Kleinfeld M, Stein E. Action of divalent cations on membrane potentials and contractility in rat atrium. Am J Physiol 1968;215:593–599.

    Google Scholar 

  50. Simons SS Jr, Chakraborti PK, Cavanaugh AH. Arsenite and cadmium (II) as probes of glucocorticoid receptor structure and function. J Biol Chem 1990;265:1938–1945.

    Google Scholar 

  51. Prabhu SD, Salama G. The heavy metal ions Ag1 and Hg21 trigger calcium release from cardiac sarcoplasmic reticulum. Arch Biochem Biophys 1990;277:47–55.

    Google Scholar 

  52. Hatzelmann A, Haurand M, Ullrich V. Involvement of calcium in the thimerosal-stimulated formation of leukotriene by fMLP in human polymorphonuclear leukocytes. Biochem Pharmacol 1990;39:559–567.

    Google Scholar 

  53. Cornell NW, Crivaro KE. Stability constant for the zincdithiothreitol complex. Anal Biochem 1972;47:203–208.

    Google Scholar 

  54. Lolkema JS, ten Hoeve-Duurkens RH, Robillard GT. The phosphoenolpyruvate-dependent fructose-specific phosphotransferase system in Rhodopseudomonas sphaeroides. EllFru possesses a Zn21-binding site and a dithiol/disulfide redox centre. Eur J Biochem 1986;154:651–656.

    Google Scholar 

  55. Zhang GH, Yamaguchi M, Kimura S, Higham S, Kraus–Friedmann N. Effects of heavy metal on rat liver microsomal Ca2(1)-ATPase and Ca21 sequestering. Relation to SH groups. J Biol Chem 1990;265:2184–2189.

    Google Scholar 

  56. Zucchi R, Yu GY, Galbani P, Mariani M, Ronca G, Roncatestoni S. Sulfhydryl redox state affects susceptibility to ischemia and sarcoplasmic reticulum Ca21 release in rat heart –implications for ischemic preconditioning. Circ Res 1998;83:908–915.

    Google Scholar 

  57. Nayler WG, Panagiotopoulos S, Elz JS, Daly MJ. Calciummediated damage during post-ischaemic reperfusion. J Mol Cell Cardiol 1988;20(Suppl 2):41–54.

    Google Scholar 

  58. Shine KI, Douglas AM. Low calcium reperfusion of ischemic myocardium. J Mol Cell Cardiol 1983;15:251–260.

    Google Scholar 

  59. Kloner RA, Braunwald E. Effects of calcium antagonists on infarcting myocardium. Am J Cardiol 1987;59:84B–94B.

    Google Scholar 

  60. Nayler WG. Calcium antagonists and the ischemic myocardium. Int J Cardiol 1987;15:267–285.

    Google Scholar 

  61. Yusuf S, Furberg CD. Effects of calcium channel blockers on survival after myocardial infarction (Editorial). Cardiovasc Drug Ther 1987;1:343–344.

    Google Scholar 

  62. Pearle DL. Calcium antagonists in acute myocardial infarction. Am J Cardiol 1988;61:22B–25B.

    Google Scholar 

  63. Blair JL, Warner DS, Todd MM. Effects of elevated plasma magnesium versus calcium on cerebral ischemic injury in rats. Stroke 1989;20:507–512.

    Google Scholar 

  64. Yokoyama H, Julian JS, Vinten-Johansen J, Johnston WE, Smith TD, McGee DS, Cordell AR. Postischemic [Ca21] repletion improves cardiac performance without altering oxygen demands. Ann Thorac Surg 1990;49:894–902.

    Google Scholar 

  65. Raschke P, Becker BF, Leipert B, Schwartz LM, Zahler S, Gerlach E. Postischemic dysfunction of the heart induced by small numbers of neutrophils via formation of hypochlorous acid. Basic Res Cardiol 1993;88:321–339.

    Google Scholar 

  66. Morgan BP, Campbell AK. The recovery of human polymorphonuclear leucocytes from sublytic complement attack is mediated by changes in intracellular free calcium. Biochem J 1985;231:205–208.

    Google Scholar 

  67. Basu DK, Karmazyn M. Injury to rat hearts produced by an exogenous free radical generating system. Study into the role of arachidonic acid and eicosanoids. J Pharmacol Exp Ther 1987;242:673–685.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fliss, H., Eley, D.W. Intracellular Calcium Protects against Oxidant Injury in Cardiac Muscle: Possible involvement of Intracellular Zinc. Heart Fail Rev 4, 1–9 (1999). https://doi.org/10.1023/A:1009884710806

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009884710806

Navigation