Skip to main content
Log in

Apoptosis, Heart Failure, Ischemic Heart Disease

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Cardiomyocytes die by apoptosis in addition to necrosis under a variety of pathological conditions including heart failure, cardiomyopathy, and ischemia/reperfusion. This review summarizes current status of the literature demonstrating evidence of apoptotic cell death in heart failure and ischemic heart disease. Apoptotic cells have been detected in failing hearts of human and dog. Ischemia up to 2 hr does not induce apoptosis, but reperefusion of ischemic heart can trigger apoptosis and DNA fragmentation. Apoptosis appears to occur in a varity of animal species including mouse, rat, rabbit, swine, dog and human suggesting that this is not species-specific.

Striking similarities exist between the mechanisms of reperfusion injury and apoptosis: both involve free radicals, Ca2+ and phospholipids. Evidence exists in the literature to indicate role of oxygen free radicals and phospholipids in apoptotic cell death induced by ischemia and reperfusion. Apoptotic cell death in rat heart was inhibited by free radical scavengers or antioxidants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kaufmann SH, ed. Apoptosis: Pharmacological Implications and Therapeutic Opportunities, 1st ed, Vol. 41. San Diego: Academic Press, 1997.

    Google Scholar 

  2. Yao M, Keogh A, Spratt P, dos Remedios CG, KieBling PC. Elevated Dnase I levels in human idiopathic dilated cardiomyopathy: An indicator of apoptosis? J Mol Cell Cardiol 1996;28:95–101.

    Google Scholar 

  3. Barr PJ, Tomei LD. Apoptosis and its role in human disease. Biotechnology 1994;12:487–493.

    Google Scholar 

  4. Jennings RB, Sommers HM, Kaltenbach JP, West JJ. Electrolyte alterations in acute myocardial ischemic injury. Circ Res 1964;14:260–269.

    Google Scholar 

  5. Das DK, Maulik N, Moraru II. Gene expression in acute myocardial stress. Induction by hypoxia, ischemia/reperfusion, hyperthermia and oxidative stress. J Mol Cell Cardiol 1995;27:181–193.

    Google Scholar 

  6. Dec GW. Prognosis in congestive heart failure: What information can best predict the future? J Nucl Med 1992;33:477–479.

    Google Scholar 

  7. Sabbah HN, Sharov VG, Riddle JM, Kono T, Lesh M, Goldstein S. Mitochondrial normalities in myocardium of dogs with chronic heart failure. J Mol Cell Cardiol 1992;24: 1333–1347.

    Google Scholar 

  8. Reimer KA, Jennings RB. Ion and water shifts, cellular. In: Cowley RA, Trump BF, eds. Pathophysiology of Shock, Anoxia, and Ischemia. Baltimore: Williams and Wilkins, 1982;132–146.

    Google Scholar 

  9. Orrenius S, McConkey DJ, Bellomo G, Nicotera P. Role of Ca21 in toxic cell killing. Trends Pharmaco Sci 1989; 10:281–285.

    Google Scholar 

  10. Gottlieb RA, Burleson KO, Kloner RA, Babior BM, Engler RL. Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clinic Invest 1994;94:1621–1628.

    Google Scholar 

  11. Tanaka M, Ito H, Adachi S, Akimoto H, Nishikawa T, Kasajima T, Marumo F, Hiroe M. Hypoxia induces apoptosis with enhanced expression of Fas antigen messenger RNA in cultured neonatal rat cardiomyocytes. Circ Res 1994;75: 426–433.

    Google Scholar 

  12. Sharov VG, Sabbah HN, Shimoyama H. Evidence of cardiomyocyte apoptosis in myocardium of dogs with chronic heart failure. Am J Pathol 1996;148:141–149.

    Google Scholar 

  13. Sharov VG, Goussev A, Higgins RSD. Higher incidence of cardiocyte apoptosis in failed explanted hearts of patients with ischemic versus idiopathic dilated cardiomyopathy. Circulation 1997;96(Abstract): 1–17.

    Google Scholar 

  14. Olivetti G, Abbi R, Quaini F, Kajstura J, Cheng W, Nitahara JA, Quaini E, Loreto CD, Beltrami CA, Krajewski S, Reed JC, Anversa P. Apoptosis in the failing human heart. N Engl J Med 1997;336:1131–1141.

    Google Scholar 

  15. Narula J, Haider N, Virmini R, Disalvo TG, Kolodgie FD, Hajjar RJ, Schmidt U, Semigran MJ, Dec G W, Khaw BA. Apoptosis, Heart Failure, Ischemic Heart Disease 171 Apoptosis in myocytes in end-stage heart failure. N Engl J Med 1996;335:1182–1189.

    Google Scholar 

  16. Liu Y, Cigola E, Cheng W, Kajstura J, Olivetti G, Hintze TH, Anversa P. Myocyte nuclear mitotic division and programmedmyocyte nuclearmitotic division and programmed myocyte cell death characterize the cardiac myopathy induced by rapid ventricular pacing in dogs. Lab Invest 1995;73:771–787.

    Google Scholar 

  17. Packer M. Is tumor necrosis factor an important neurohormonal mechanism in chronic heart failure? Circulation 1995;95:1379–1382.

    Google Scholar 

  18. Aoki N, Siegfried M, Lefer AM. Anti-EDRF effect of tumor necrosis factor in isolated perfused carotid arteries. Am J Physiol 1989;256:H1509–H1512.

    Google Scholar 

  19. Matsubara T, Ziff M. Increased superoxide anion release from human endothelial cells in response to cytokines. J Immunol 1986;137:3259–3298.

    Google Scholar 

  20. Habit FM, Springal DR, Davies GJ, Oakley CM, Yacub MN, Polak JM. Tumor necrosis factor and inducible nitric oxide synthase in dilated cardiomyopathy. Lancet 1996;347:1151–1154.

    Google Scholar 

  21. Hatwood GA, Tsao PS, Von Der Leyen, Mann MJ, Keeling PJ, Trindade PT, Lewis NP, Byrne Cd, Rickenbacher PR, Bishopric NH, Cooke JP, Mckenna WJ, Fowler MB. Expression of inducible nitric oxide synthase in human heart failure. Circulation 1996;93:1087–1094.

    Google Scholar 

  22. Ferrari R, Agnoletti L, Comini L, Gaia G, Bachetti T, Cargnoni A, Ceconi C, Curello S, Visioli O. Oxidative stress during myocardial ischemia and heart failure. Eur Heart J 1998;19:B2–B11.

    Google Scholar 

  23. Hegewisch S, Weh HJ, Hossfeld DK. TNF-induced cardiomyopathy. Lancet 1990;2:294–295.

    Google Scholar 

  24. Wong SC, Fukuchi M, Melnyk P, Rodger I, Giaid A. Induction of cyclooxygenase-2 and activation of nuclear factorkappa B in myocardium of patients with congestive heart failure. Circulation 1998;98:100–103.

    Google Scholar 

  25. Zhihe Li, Bing OHL, Long X, Robinson KG, Lakatta EG. Increased cardiomyocyte apoptosis during the transition heart failure in the spontaneously hypertensive rat. Am J Physiol 1997;272:H2313–H2319.

    Google Scholar 

  26. Richter C. Pro-oxidants and mitochondrial Ca21: Their relationship to apoptosis and oncogenesis. FEBS Lett 1993;325:104–107.

    Google Scholar 

  27. Greenlund LJS, Deckwerth TL, Johnson EM Jr. Superoxide dismutase delays neuronal apoptosis: A role for reactive oxygen species in programmed neuronal death. Neuron 1995;14:303–315.

    Google Scholar 

  28. Tominaga T, Kure S, Narisawa K, Yoshimoto T. Endonuclease activation following focal ischemic injury in the rat brain. Brain Res 1993;608:21–26.

    Google Scholar 

  29. Fukuda K, Kojiro M, Chiu JF. Demonstration of extensive chromatin cleavage in transplanted Morris Hepatoma 7777 tissue: Apoptosis or necrosis. Am J Pathol 1993; 142:935–946.

    Google Scholar 

  30. Schumer M, Colombel MC, Sawczuk IS, Gobe G, Connor J, O'Toole KM, Wise GJ, Buttyan R. Morphologic, biochemical & molecular evidence of apoptosis during the reperfusion phase after brief periods of renal ischemia. Am J Pathol 1992;140:831–838.

    Google Scholar 

  31. Kajstura J, Cheng W, Reiss K, Clark WA, Sonnenblick EH, Krajewski S, Reed JC, Olivetti G, Anversa P. Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Lab Invest 1996;74:86–107.

    Google Scholar 

  32. Isner JM, Kearney M, Bortman S, Passeri J. Apoptosis in human atherosclerosis and restenosis. Circulation 1995;91:2703–2711.

    Google Scholar 

  33. Maulik N, Yoshida T, Das DK. Oxidative stress developed during reperfusion of ischemic myocardium induces apoptosis in rat heart. Free Rad Biol Med 1998;24:869–875.

    Google Scholar 

  34. Maulik N, Kagan EV, Das DK. Translocation of phosphatidylserine and phosphatidylethanolamine precedes apoptosis in ischemic reperfused heart. Am J Physiol 1998;274:H242–H248.

    Google Scholar 

  35. Fliss H, Gattinger D. Apoptosis in ischemic and reperfused rat myocardsium. Circ Res 1996;79:949–956.

    Google Scholar 

  36. Maulik N, Yoshida T, Das DK. Regulation of cardiomyocyte apoptosis in ischemic reperfused mouse heart by glutathione peroxidase. Mol Cell Biochem 1999;196:13–21.

    Google Scholar 

  37. Sharov V, Sabbah H N, Shimoyama H, Goussev A V, Lesch M, Goldstein S. Evidence of cardiocyte apoptosis in myocardium of dogs with chronic heart failure. Am J Pathol 1996;148:141–149.

    Google Scholar 

  38. Flack J, Kimura Y, Engelman RM, Das DK. Preconditioning the heart by repeated stunning improves myocardial salvage. Circulation 1991;84:III369–III374.

    Google Scholar 

  39. Li GC, Vasquez BS, Gallagher KP, Lucchesi BR. Myocardial protection with preconditioning. Circulation 1990;82: 609–619.

    Google Scholar 

  40. Maulik N, Goswami S, Galang N, Das DK. Differential regulation of BCL-2, AP-1 and NF-kB on cardiomyocyte apoptosis during myocardial ischemic stress adaptation. FEBS Lett 1999;443:331–336.

    Google Scholar 

  41. Das DK, Maulik N, Sato M, Ray P. Reactive oxygen species function as second messenger during ischemic preconditioning of heart. Mol Cell Biochem 1999;196:59–67.

    Google Scholar 

  42. Geldwerth DFA, Kuypers FA, Butikofer P, Allary M, Lubin BH, Devaux PF. Transbilayer mobility and distribution of red cell phospholipids during storage. J Clin Invest 1993;92:308–314.

    Google Scholar 

  43. Morrot G, Zachowski A, Devaux PF. Partial purification and characterization of the human erythrocyte Mg212ATPase: A candidate aminophospholipid translocase. FEBS Lett 1990;266:29–32.

    Google Scholar 

  44. Das DK, Engelman RM, Prasad MR, Rousou JA, Breyer RH, Jones R, Young H, Cordis GA. Improvement of ischemia reperfusion induced myocardial dysfunction by modulating calcium overload using a novel specific calmodulin antagonist, CGS 9343B. Biochem Pharmacol 1989;38:465–471.

    Google Scholar 

  45. Post JA, Langer GA, Op den Kamp JA, Verkleij AJ. Phospholipid asymmetry in cardiac sarcolemma. Analysis of intact cells and gas-dissected membranes. biochem Biophys Acta 1988;943:255–266.

    Google Scholar 

  46. Koopman G, Reutelingsperger CP, Kuijten GA, Keehen RM, Pals ST, Van Oers MH. Annexin V for flow cytometric detection of phosphatidylserin expression on B cells undergoing apoptosis. Blood 1995;84:1415–1420.

    Google Scholar 

  47. Verhoven B, Schlegel RA, Williamson P. Mechanisms of phosphatidylserine exposure, aphagocyte recognition signal, on apoptotic T lymphocytes. J Exp Med 1995; 182:1597–1601.

    Google Scholar 

  48. Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C. A novel assay for apoptosis. Flow cytometric detection of phosphatidyleserine expression on early apoptotic cells using fluoresceine labeled annexin V. J Immunol Methods 1995;184:39–51.

    Google Scholar 

  49. Buttke TM, Sandstrom PA. Oxidative stress as a mediator of apoptosis. Immunol Today 1994;15:7–10.

    Google Scholar 

  50. Verity MA, Bredesen DE, Sarafian T. Role of reactive oxygen species in neuronal degeneration. Annals NY Acad Sci 1995;765:340.

    Google Scholar 

  51. Muehlematter D, Larsson R, Cerutti P. Active oxygen induced DNA strand breakage and poly ADP-ribosylation in promotable and non-promotable JB6 mouse epidermal cells. Carcinogenesis 1988;9:239–245.

    Google Scholar 

  52. Noguchi N, Yoshida Y, Kaneda H, Yamamoto Y, Niki E. Action of ebselen as an antioxidant against lipid peroxidation. Biochem Pharmacol 1992;44:39–44.

    Google Scholar 

  53. Ramakrishnan N, Kalinich JF, McClain DE. Ebselen inhibition of apoptosis by reduction of peroxides. Biochem Phartmacol 1996;51:1443–1451.

    Google Scholar 

  54. Maulik N, Sato M, Price BD, Das DK. An essential role of NFjB in tyrosine kinase signaling of p38 MAP kinase regulation of myocardial adaptation to ischemia. FEBS Lett 1998;429:365–369.

    Google Scholar 

  55. McMahon SB, Monroe JG. Role of primary response genes in generating cellular responses to growth factors. FASEB J 1992;62:2707–2715.

    Google Scholar 

  56. Diamond MI, Miner JN, Yoshinaga SK, Yamamoto KR. Transcription factor interactions: Selectors of positive or negative regulation from a single DNA element. Science 1990;249:1266–1272.

    Google Scholar 

  57. Ham J, Babij C, Whitfield J, Pfarr C M, Lallemand D, Yaniv M, Rubin LL. A c-Jun dominant negative mutant protects sympathetic neurons against programmed cell death. Neuron 1995;14:927–937.

    Google Scholar 

  58. Das DK, Engelman RM, Kimura Y. Molecular adaptation of cellular defences following preconditioning of the heart by repeated ischemia. Cardiovasc Res 1993;27:578–584.

    Google Scholar 

  59. Brand T, Sharma HS, Fleishmann KE, Duncker DJ, McFalls EO, Verdouw PD, Schaper W. Proto-oncogene expression in porcine myocardium subjected to ischemia and reperfusion. Circ Res 1992;71:1351–1360.

    Google Scholar 

  60. Maulik N, Yoshida T, Engelman RM, Rousou JA, Flack J E, Deaton D, Das D K. Oxidative stress developed during reperfusion of ischemic myocardium downregulates Bcl-2 gene and induces apoptosis and DNA laddering. Surg Forum 1997;48:245–249.

    Google Scholar 

  61. Hokenbery DM, Oltvai ZN, Yin X-M, Milliman CL, Korsmeyer XY. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 1993;75:241–251.

    Google Scholar 

  62. Maulik N, Engelman RM, Rousou JA, Flack JE, Deaton DW, Das DK. Ischemic preconditioning supresses apoptosis by upregulating the anti-death gene, Bcl-2. Surg Forum 1998;49:209–211.

    Google Scholar 

  63. Marti A, Jehn B, Costello E, Keon N, Ke G, Martia F, Jaggi R. Protein kinase A and AP-1 (c-Fos/Jun D) are induced during apoptosis of mouse mammary epithelial cells. Oncogene 1994;9:1213–1223.

    Google Scholar 

  64. Sawai H, Okazaki T, Yamamoto H, Okano H, Takeda Y, Tashima M, Sawada H, Okuma M, Ishikura H, Umehara H, Domae N. Requirement of AP-1 for ceramide-induced apoptosis in human leukemia HL-60 cells. J Biol Chem 1995;270:27326–27331.

    Google Scholar 

  65. Watabe M, Ito K, Masuda Y, Nakajo S, Nakaya K. Activation of AP-1 is required for bufalin-induced apoptosis in human leukemia U937 cells. Oncogene 1998;16:779–787.

    Google Scholar 

  66. Ishikawa Y, Yokoo T, Kitamura M. C-Jun/AP-1, but not NFkB, is a mediator for oxidant-initiated apoptosis in glomerular mesangial cells. Biochem Biophys Res Commun 1997;240:496–501.

    Google Scholar 

  67. Toledano M, Leonard WJ.Modulation of transcription factor NF-kappa B binding activity by oxidation-reduction in vitro. Proc Natl Acad Sci USA 1991;86:5974–5978.

    Google Scholar 

  68. Meyer M, Schreck R, Baeuerle PA. H202 and antioxidants have opposite effects on activation of NF-kappa B and AP-1 in intact cells: AP-1 as secondary antioxidant-responsive factor. EMBO J 1993;12:2005–2015.

    Google Scholar 

  69. Maulik N. Apoptotic cell death during ischemia/reperfusion and its attenuation by antioxidant therapy. J Cardiol Pathol 1999; In press.

  70. Maulik N, Yoshida T, Engelman RM, Rousou JA, Flack JE, Deaton D, Das DK. Oxidative stress developed during open heart surgery induces apoptosis: Reduction of apoptotic cell death by free radical scavenger, Ebselen (Abstract). Circulation, 1997.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maulik, N., Das, D.K. Apoptosis, Heart Failure, Ischemic Heart Disease. Heart Fail Rev 4, 1–9 (1999). https://doi.org/10.1023/A:1009876508989

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009876508989

Navigation