Skip to main content
Log in

The Molecular Energetics of the Failing Heart from Animal Models―Small Animal Models

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Small animal models of heart failure have been widely used. Availability of transgenic mice with perturbations of the molecular pathways known to be altered in heart failure will substantially increase the number of small animal models for heart failure research. This chapter summarizes the alterations in myocardial energetics observed in failing hearts of small animal models using the combined tools of 31P NMR spectroscopy and biochemical assays. These include: early depletion of total creatine and phosphocreatine followed by decreased creatine kinase activity; both contribute to decreased capacity and velocity of the creatine kinase reaction resulting in decreased energy reserve during the development of heart failure; decreased ATP content at end-stage failing hearts; and a switch in substrate utilization with increased preference for glucose in hypertrophied and failing hearts. Evidence presented here suggest that these abnormalities contribute to failure to recruit contractile reserve, increased susceptibility for diastolic dysfunction and impaired calcium homeostasis in hypertrophied and failing hearts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bittl JA, Ingwall JS. Reaction rates of creatine kinase and ATP synthesis in the isolated rat heart: A 31PNMRmagnetization transfer study. J Biol Chem 1985;260:3512–3517.

    Google Scholar 

  2. Starling RC, Hammer DF, Altschuld RA. Human myocardial ATP content and in vivo contractile function. Mole Cell Biochem 1998;180:171–177.

    Google Scholar 

  3. Ingwall JS, Saupe K, Spindler M. 31P NMR Spectroscopy of the Mouse Heart. In: Hoit BD, Walsh RA, eds. Cardiovascular Physiology in the Genetically Engineered Mouse. Norwell, Mass: Kluwer Academic Publishers, 1998:183–191.

    Google Scholar 

  4. Aresta F, Chacko SM, Chacko VP, Weiss RG. In vivo non-invasive assessment of murine cardiac metabolism. JACC 1999;33:479A.

    Google Scholar 

  5. Shen W, Vatner DE, Shannon RP, Wagner TE, Homcy CJ, Vatner SF, Ingwall JS. Impaired energetics contribute to cardiac dysfunction in transgenic mice overexpression of cardiac Gsa. Circulation 1998;98(Suppl):I553.

    Google Scholar 

  6. Ingwall JS, Kramer MF, Fifer MA, Lorell BH, Shemin R, Grossman W, Allen PD. The creatine kinase system in normal and diseased human myocardium. N Engl J Med 1985;313:1050–1054.

    Google Scholar 

  7. Ingwall JS. Is cardiac failure a consequence of decreased energy reserve? Circulation 1993;87(Suppl VII):58–62.

    Google Scholar 

  8. Tian R, Nascimben L, Kaddurah-Daouk R, Ingwall JS. Depletion of energy reserve via the creatine kinase reaction during the evolution of heart failure in cardiomyopathic hamsters. J Mol Cell Cardiol 1996;28:755–765.

    Google Scholar 

  9. Bittl JA, Delayre J, Ingwall JS. Rate equation for creatine kinase predicts the in vivo reaction velocity: 31P NMR surface coil studies in brain, heart and skeletal muscle of the living rat. Biochemistry 1987;26:6083–6090.

    Google Scholar 

  10. McAuliffe JJ, Perry SB, Brooks EE, Ingwall JS. Kinetics of the creatine kinase reaction in neonatal rabbit heart: An empirical analysis of the rate equation. Biochemistry 1991;30:2585–2593.

    Google Scholar 

  11. Ingwall JS, Atkinson DA, Clarke K, Fetters JA. Energetic correlates of cardiac failure: Changes in the creatine kinase systemin the failing myocardium. EurHeart J 1990;11(Suppl B):108–115.

    Google Scholar 

  12. Bishop SP, Altschuld RA. Increased glycolytic metabolism in cardiac hypertrophy and congestive failure.AmJ Physiol 1970;218(1):153–159.

    Google Scholar 

  13. Raizada V, Pathak D, Avery G, Woodfin B. Accelerated glycolysis in early hypertensive left ventricular hypertrophy. Cardiology 1993;83:160–164.

    Google Scholar 

  14. Taegtmeyer H, Overturf ML. Effects of moderate hypertension on cardiac function and metabolism in the rabbit. Hypertension 1988;11:416–426.

    Google Scholar 

  15. Nascimben L, Tian R, Lorell BH, Reis I, Weinberg EO, Ingwall JS. Rates of insulin-independent glucose entry and glycolysis are increased in hypertrophied hearts. Circulation 1995;92(8 Suppl 1):I–770.

    Google Scholar 

  16. Lopaschuk GD, Belke DD, Gamble J, Itoi T, Schonekess BO. Regulation of fatty acid oxidation in the mammalian heart in health and disease. Biochim Biophys Acta 1994;1213: 263–276.

    Google Scholar 

  17. Allard MF, Schonekess BO, Henning SL, English DR, Lopaschuk GD. Contribution of oxidative metabolism and glycolysis to ATP production in hypertrophied hearts. Am J Physiol/Heart Circ Physiol 1994;267(36):H742–H750.

    Google Scholar 

  18. Zhang J, Duncker DJ, Ya X, Zhang Y, Pavek T, Wei H, Merkle H, Ugurbil K, From AHL, Bache RJ. Effects of left ventricular hypertrophy secondary to chronic pressure overload on transmural myocardial 2-deoxyglucose uptake. A 31P NMR Spectroscopic study. Circulation 1995;92:1274–1283.

    Google Scholar 

  19. Kagaya Y, Kanno Y, Takeyama D, Ishide N, Maruyama Y, Takahashi T, Ido T, Takishima T. Effects of long-term pressure overload on regional myocardial glucose and free fatty acid uptake in rats. A quantitative autoradiographic study. Circulation 1990;81:1353–1361.

    Google Scholar 

  20. Nuutila P, Maki M, Laine H, Knuuti MJ, Ruotsalainen U, Luotolahti M, Haaparanta M, Solin O, Jula A, Koivisto VA, Voipio-Pulkki L-M, Yki-Jarvinene H. Insulin action on heart and skeletal muscle glucose uptake in essential hypertension. J Clin Invest 1995;96:1003–1009.

    Google Scholar 

  21. Tian R, Christe ME, Spindler M, Hopkins JCA, Halow JM, Camacho SA, Ingwall JS. The role of MgADP in the development of diastolic dysfunction in the intact beating rat hearts. J Clin Invest 1997;99:745–751.

    Google Scholar 

  22. Recchia FA, McConnell PI, Bernstein RD, Vogel TR, Xu X, Hintze TH. Reduced nitric oxide production and altered myocardial metabolism during the decompensation of pacing-induced heart failure in the conscious dog. Circ Res 1998;83:969–979.

    Google Scholar 

  23. Tian R, Nascimben L, Ingwall JS, Lorell BH. Failure to maintain a low ADP concentration impairs diastolic function in hypertrophied rat hearts. Circulation 1997;96:1313–1319.

    Google Scholar 

  24. Collins-Nakai RL, Noseworthy D, Lopaschuk GD. Epinephrine increases ATP production in hearts by preferentially increasing glucose metabolism. Am J Physiol/Heart Circ Physiol 1994;267(36):H1862–H1871.

    Google Scholar 

  25. Christe ME, Rodgers RL. Altered glucose and fatty acid oxidation in hearts of the spontaneously hypertensive rat. J Mol Cell Cardiol 1994;26:1371–1375.

    Google Scholar 

  26. Paternostro G, Clarke K, Heath J, Seymour A-M L, Radda GK. Decreased GLUT-4 mRNA content and insulin-sensitive deoxyglucose uptake show insulin resistance in the hypertensive rat heart. Cardiovasc Res 1995;30:205–211.

    Google Scholar 

  27. Hamman BL, Bittl JA, Jacobus WE, Allen PD, Spencer RS, Tian R, Ingwall JS. Inhibition of the creatine kinase reaction decreases the contractile reserve of the isolated rat heart. Am J Physiol 1995;269:H1030–1036.

    Google Scholar 

  28. Tian R, Ingwall JS. The energetic basis for reduced contractile reserve in isolated rat hearts. Am J Physiol 1996;270:H1207–H1216.

    Google Scholar 

  29. Gross WL, Bak MI, Ingwall JS, Arstall MA, Smith TW, Balligant J-L, Kelly RA. Nitric oxide inhibits creatine kinase and regulates rat heart contractile reserve. Proc Natl Acad Sci USA 1996;931:5604–5609.

    Google Scholar 

  30. Tian R, Halow JM, Meyer M, Dillmann WH, Figueredo VM, Ingwall JS, Camacho SA. Thermodynamic limitation for Ca21 handling contributes to decreased contractile reserve in rat hearts. Am J Physiol 1998;275:H2064–H2071.

    Google Scholar 

  31. Bassani JWM, Yuan W, Bers DM. Fractional SR Ca21 release is regulateed by trigger Ca21 and SR Ca21 content in cardiac myocytes. Am J Physiol 1995;268:C1313–C1329.

    Google Scholar 

  32. Morgan JP. Abnormal intracellular modulation of calcium as a major cause of cardiac dysfunction. N Engl J Med 1991; 325:625–632.

    Google Scholar 

  33. Neubauer S, Horn M, Naumann A, Tian R, Hu K, Laser M, Friedrich J, Gaudron P, Schnackerz K, Ingwall JS, Ertl G. Impairment of energy metabolism in intact residual myocardium of rat hearts with chronic myocardial infarction. J Clin Invest 1995;95:1092–1100.

    Google Scholar 

  34. Friedrich J, Apstein CS, Ingwall JS. 31P nuclear magnetic resonance spectroscopic imaging of regions of remodeled myocardium in the infarcted rat heart. Circulation 1995;92:3527–3538.

    Google Scholar 

  35. Nascimben L, Friedrich J, Liao R, Pauletto P, Pessina AC, Ingwall JS. Enalapril treatment increases cardiac performance and energy reserve via the creatine kinase reaction in myocardium of Syrian myopathic hamsters with advanced heart failure. Circulation 1995;91:1824–1833.

    Google Scholar 

  36. Liao R, Nascimben L. Friedrich J. Gwathmey JK, Ingwall JS. Decreased energy reserve in an animal model of dilated cardiomyopathy: Relationship to contractile performance. Circ Res 1996;78:893–902.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, R., Ingwall, J.S. The Molecular Energetics of the Failing Heart from Animal Models―Small Animal Models. Heart Fail Rev 4, 245–253 (1999). https://doi.org/10.1023/A:1009862007475

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009862007475

Navigation