Skip to main content
Log in

The Molecular Energetics of the Failing Heart from Animal Models—Large Animal Models

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Large animal models of left ventricular hypertrophy (LVH) and cardiac failure are associated with alterations of myocardial high energy phosphate (HEP) content and abnormalities of oxidative phosphorylation regulation. Concentric LVH secondary to pressure overload can result in loss of myocardial ATP, a decrease of the phosphocreatine (PCr)/ATP ratio, and an increase of calculated free ADP; these changes are, at least in part, the result of alterations in the regulation of oxidative phosphorylation, but can be aggravated by impaired blood flow to the subendocardium during increased cardiac workloads. Eccentric LVH resulting from volume overload produces only modest reductions of the myocardial PCr/ATP ratio which are not worsened during increases of cardiac work. Post-infarction left ventricular remodeling is associated with a decrease of the myocardial PCr/ATP ratio that is most marked in animals that develop overt congestive heart failure. The depressed PCr/ATP ratio and ATP content in hypertrophied hearts are not the result of persistent myocardial hypoperfusion, since they are not corrected by pharmacologic coronary vasodilation. Furthermore, the additional decrease of myocardial PCr/ATP which occurs during high workloads in hypertrophied as well as in normal hearts occur without evidence of myoglobin desaturation, indicating that these changes cannot be ascribed to oxygen insufficiency. There is some evidence that impairment of long chain fatty acid uptake contributes to HEP abnormalities in hypertrophied or failing hearts. Furthermore, alterations in creatine kinase isoform expression in hypertrophied or failing hearts may result in higher levels of free ADP that could contribute to the observed HEP abnormalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Neubauer S, Krahe T, Schindler R, Horn M, Hillenbrand H, Entzeroth C, Mader H, Kromer EP, Riegger GA, Lackner K, et al. 31P magnetic resonance spectroscopy in dilated cardiomyopathy and coronary artery disease. Altered cardiac high-energy phosphate metabolism in heart failure. Circulation 1992;86:1810–1818.

    Google Scholar 

  2. From AHL, Zimmer SD, Michurski SP, Mohanakrishnan P, Ulstad VK, Thoma WJ, Ugurbil K. Regulation of the oxidative phosphorylation rate in the intact cell. Biochemistry 1990;29:3731–3743.

    Google Scholar 

  3. Bottomley PA. MR spectroscopy of the human heart: The status and the challenges. Radiology 1994;191:593–612.

    Google Scholar 

  4. Hochachka PW, Clark CM, Holden JE, Stanley C, Ugurbil K, Menon RS. 31P magnetic resonance spectroscopy of the Sherpa heart: A phosphocreatine/adenosine triphosphate signature of metabolic defense against hypobaric hypoxia. Proc Nat Acad Sci 1996;93:1215–1220.

    Google Scholar 

  5. Neubauer S, Horn M, Godde M, Ertl G, Ingwall JS. The myocardial phosphocreatine/ATP ratio is a predictor of mortality in patients with dilated cardiomyopathy. Circulation 1997;96:2190–2196.

    Google Scholar 

  6. Balaban RS, Kantor HL, Katz LA, Briggs RW. Relation between work and phosphate metabolites in the in vivo paced mammalian heart. Science 1986;232:1121–1123.

    Google Scholar 

  7. Path G, Robitaille P-M, Merkle H, Tristani M, Zhang J, Garwood M, From AHL, Bache RJ, Ugurbil K. The correlation between transmural high energy phosphate levels and myocardial blood flow in the presence of graded coronary stenosis. Circ Res 1990;67:660–673.

    Google Scholar 

  8. Schaefer S, Schwartz GG, Wisneski JA Trocha SD, Christoph I, Steinman SK, Garcia J, Massie BM, Weiner MW. Response of high-energy phosphates and lactate release during prolonged regional ischemia in vivo. Circulation 1992;85:342–349.

    Google Scholar 

  9. Murakami Y, Zhang Y, Cho YK, Mansoor AM, Chung JK, Chu C, Francis G, Ugurbil K, Bache RJ, From AHL, Jerosch-Herold M, Wilke N, Zhang J. Myocardial oxygenation during high work states in hearts with postinfarction remodeling. Circulation 1999;99:942–948.

    Google Scholar 

  10. Zhang J, Merkle H, From AHL, Ugurbil K, Bache RJ. Bioenergetic abnormalities associated with severe left ventricular hypertrophy. J Clin Invest 1993;92:993–1003.

    Google Scholar 

  11. Massie BM, Schwartz GG, Garcia J, Wisneski JA, Weiner MW, Twyman O. Myocardial metabolism during increased work states in the porcine left ventricle in vivo. Circ Res 1994;74:64–73.

    Google Scholar 

  12. Bache RJ, Zhang J, Path G, From AHL, Bache RJ, Ugurbil K. Myocardial high energy phosphate levels during tachycardia and inotropic stimulation in the chronically pressure overloaded hypertrophied left ventricle. Am J Physiol 1994;266:H1959–1970.

    Google Scholar 

  13. Massie BM, Schaefer S, Garcia J, McKirnan D, Schwartz GG, Wisneski JA, Weiner MW, White FC. Myocardial highenergy phosphate and substrate metabolism in swine with moderate left ventricular hypertrophy. Circulation 1995;91:1814–1823.

    Google Scholar 

  14. Zhang J, Path G, Chepuri V, Homans DC, Merkle H, Hendrich, K, Ugurbil K, Bache RJ, From AHL. Effects of dobutamine on myocardial blood flow, contractile function, and bioenergetic responses distal to a coronary stenosis. Implications with regard to dobutamine stress testing. Am Heart J 1995;129:330–342.

    Google Scholar 

  15. Zhang J, McDonald K. Bioenergetic consequence of left ventricular remodeling secondary to discrete myocardial infarction. Circulation 1995;92:1011–1019.

    Google Scholar 

  16. Zhang J, Duncker DJ, Xu Y, Zhang Y, Path G, Merkle H, Hendrich K, From AHL, Bache RJ, Ugurbil K. Bioenergetic responses of normal myocardium at very high workstates: An in vivo transmural 31P NMR study. Am J Physiol 1995;268:H1891–H1905.

    Google Scholar 

  17. Zhang J, Duncker DJ, Ya X, Zhang Y, Pavek T, Wei H, Merkle H, Ugurbil K, From AHL, Bache RJ. Effect of left ventricular hypertrophy secondary to chronic pressure overload on transmural myocardial glucose uptake: A 31P NMR spectroscopic study. Circulation 1995;92:1274–1283.

    Google Scholar 

  18. Zhang J, Wilke N, Wang Y, Zhang Y, Wang C, Eijgelshoven MHJ, Cho YK, Murakami Y, Ugurbil K, Bache RJ, From AHL. Functional and bioenergetic consequences of postinfarction left ventricular remodeling in a new porcine model: An MRI and 31P MRS study. Circulation 1996;94: 1089–1099.

    Google Scholar 

  19. Zhang J, Toher C, Erhard M, Zhang Y, Ugurbil K, Bache RJ, Lange T, Homans DC. Bioenergetic and functional consequences of left ventricular volume overload hypertrophy. Circulation 1997;96:334–343.

    Google Scholar 

  20. Ingwall JS. Phosphorus nuclear magnetic resonance spectroscopy of cardiac and skeletal muscles. Amer J Physiol 1982;242:H729–H744.

    Google Scholar 

  21. Chen W, Zhang J, Eljgelshoven MHJ, Zhang Y, Zhu X-H, Wang C, Cho Y, Merkle H, Ugurbil K. Determination of deoxymyoglobin changes during graded myocardial ischemia: An in vivo 1H NMR spectroscopy study. Magn Reson Med 1997;38:193–197.

    Google Scholar 

  22. Gong G, Ugurbil K, Zhang J. Transmural metabolic heterogeneity at high cardiac work states. Am J Physiol/Heart Circ Physiol 1999;277(46):H236–H242.

    Google Scholar 

  23. Pantely G A, Malone SA, Rhen WS, Anselone CG, Arai A, Bristow JD. Regeneration of myocardial phosphocreatine in pigs despite continued moderate ischemia. Circ Res 1990;67:1481–1493.

    Google Scholar 

  24. Neubauer S, Horn M, Naumann A, Tian R, Hu K, Laser M, Friedrich J, Gaudron P, Schnackerz K, Ingwall JS, Ertl G. Impairment of energy metabolism in intact residualmyocardium of rat hearts with chronic myocardial infarction. J Clin Invest 1995;95:1092–1100.

    Google Scholar 

  25. Zimmer GA, Zimmermann R, Hess OMS, Schneider J, Kubler W, Krayenbuehl HP, Hagl S, Mall, G. Decreased concentration of myofibrils and myofiber hypertrophy are structural determinants of impaired left ventricular function in patients with chronic heart diseases: A multiple logistic regression analysis. JACC 1992;20:1135–1142.

    Google Scholar 

  26. Schwartz A, Sordahl LA, Entman ML, Allen JC, Reddy YS, Goldstein MA, Luchi RJ, Wyborny LE. Abnormal biochemistry in myocardial failure. Am J Cardiol 1975;32:407–422.

    Google Scholar 

  27. Alpert NR, Muleiri LA, Hasenfuss G, Holubarsch. Myocyte reorganization in hypertrophied and failing hearts. Eur Heart J 1995;16:2–7.

    Google Scholar 

  28. Harding SE, Jones M, Vescovo G, DelMonte F, Poole-Wilson PA. Reduced contractile responses to forskolin and a cyclic AMP analogue in myocytes from failing human ventricle. Eur J Pharmacol 1992;223:39–48.

    Google Scholar 

  29. Pieske B, Kretschmann B, Meyer M, Holubarsch C, Weirich J, Posival H, Minami K, Just H, Hasenfuss G. Alterations in intracellular calcium handling associated with the inverse force-frequency relation in human dilated cardiomyopathy. Circulation 1995;92:1169–1178.

    Google Scholar 

  30. Hasenfuss G, Mulieri LA, Leavitt BJ, Allen PD, Holubarsch C, Just H, Alpert NR. Contractile protein function in failing and nonfailing human myocardium. Basic Res Cardiol 1992; 87:106.

    Google Scholar 

  31. Hasenfuss G, Mulieri LA, Leavitt BJ, Allen PD, Haeberle JR, Alpert NR. Alteration of contractile function and excitation-contraction coupling in dilated cardiomyopathy. Circ Res 1992;70:1225–1232.

    Google Scholar 

  32. Anversa P, Beghi C, Kikkawa Y, Olivetti G. Myocardial response to infarction in the rat. Morphometric measurement of infarct size and myocyte cellular hypertrophy. Am J Path 1985;118:484–492.

    Google Scholar 

  33. Alyono D, Anderson RW, Parrish DG, Dai X, Bache RJ. Alterations of myocardial blood flow associated with experimental canine left ventricular hypertrophy secondary to valvular aortic stenosis. Circ Res 1986;58:47–57.

    Google Scholar 

  34. Bishop SP, Melsen LR. Myocardial necrosis, fibrosis, and DNA synthesis in experimental cardiac hypertrophy induced by sudden pressure overload. Circ Res 1976;39: 238–245.

    Google Scholar 

  35. Henry TD, Zhang J, Cepuri V, Fashingbauer P, Gormick CC, Ugurbil K, Bache RJ, From AHL. Effects of dobutamine on myocardial bioenergetics in pacing induced heart failure. Circulation 1991;84(Suppl II):II–380.

    Google Scholar 

  36. Christe ME, Rodgers RL. Altered glucose and fatty acid oxidation in hearts of the spontaneously hypertensive rat. J Mol Cell Cardiol 1994;26:1371–1375.

    Google Scholar 

  37. El Alaqui-Talibi Z, Landormy S, Loireau A, Moravec J. Fatty acid oxidation and mechanical performance of volumeoverloaded rat hearts. Am J Physiol 1992;262:H1068–1074.

    Google Scholar 

  38. Katz AM. Cardiomyopathy of overload. A major determinant of prognosis in congestive heart failure. N Engl J Med 1989;322:100–110.

    Google Scholar 

  39. El Alaoui-Talibi Z, Moravec J. Carnitine transport and exogenous palmitate oxidation in chronically volume-ooverloaded hearts. Biochim Biophys Acta 1989;1003:109–114.

    Google Scholar 

  40. Regitz V, Bossaller C, Strasser R, Muller M, Shug AL, Fleck E. Metabolic alterations in end stage and less severe heart failure-myocardial carnitine decrease. J Clin Chem Clin Biochem 1990;28:611–617.

    Google Scholar 

  41. Pierpont MEM, Foker JE, Pierpont GL. Myocardial carnitine metabolism in congestive heart failure induced by incessant tachycardia. Basic Res Cardiol 1993;88:362–370.

    Google Scholar 

  42. Iliceto S, Scrutino D, Bruzzi P, et al. Effects of L-carnitine administration on left ventricular remodeling after acute anterior myocardial infarction: The L-carnitine echocardiografi a digitalizzata infarto myocardico (CEDIM) trial. J Am Coll Cardiol 1995;36:380–387.

    Google Scholar 

  43. Arai A, Kasserra C, Hopkins J, Gandjbakhche, Bonner R, Balaban R. Optical reflectance spectroscopy measures cellular oxygenation in vivo: Effects of work Circulation 1997;96:I–692 (Abstract).

    Google Scholar 

  44. Van Citters RL, Franklin DL. Cardiovascular performance of Alaska sled dogs during exercise. Circ Res 1969;24:33–42.

    Google Scholar 

  45. Leier CV, Binkley PF. Parenteral inotropic support for advanced congestive heart failure. Prog Cardiovasc Dis. 1998;41:207–224.

    Google Scholar 

  46. Whalen WJ. Intracellular PO2 in heart and skeletal muscle. Physiologist 1971;14:69–82.

    Google Scholar 

  47. Antonini E, Brunori M. Hemoglobin and Myoglobin in Their Reactions with Ligands. Amsterdam: North-Holland Publ Co., 1971:220.

    Google Scholar 

  48. Schenkman K, Marble D, Burns D, Feigl E. Myoglobin oxygen dissociation by multiwavelength spectroscopy. J Appl Physiol 1997;82:86–92.

    Google Scholar 

  49. Gayeski TEJ, Honig CR. Intracellular PO2 in individual cardiomyocytes in dogs, cats, rabbits, ferrets and rats. Am J Physiol 1991;260:H522–H531.

    Google Scholar 

  50. Parsons WJ, Rembert JC, Bauman RP, Greenfield JC, Plantadosi CA. Dynamic mechanisms of cardiac oxygenation during brief ischemia and reperfusion. Am J Physiol 1990;259:H1477–H1485.

    Google Scholar 

  51. Tamura M, Hazeki O, Nioka S, Chance B. In vivo study of tissue oxygen metabolism using optical and nuclear magnetic resonance spectroscopy. Annu Rev Physiol 1989;51: 813–834.

    Google Scholar 

  52. Kreutzer U, Jue T. 1H-nuclear magnetic resonance deoxymyoglobin signal as indicator of intracellular oxygenation in myocardium. Am J Physiol 1991;261:H2091–H2097.

    Google Scholar 

  53. Kreutzer U, Jue T. Critical intracellular O2 in myocardium as determined by 1H nuclear magnetic resonance signal of myoglobin. Am J Physiol 1995;268:H1675–H1681.

    Google Scholar 

  54. Kreutzer U, Wang DS, Jue T. Observing the 1H NMR signal of the myoglobin Val-E11 in myocardium: An index of cellular oxygenation. Proc Natl Acad Sci 1992;89:4731–4733.

    Google Scholar 

  55. Zhang J, Murakami Y, Zhang Y, Cho YK, Ye Y, Gong G, Bache RJ, Ugurbil K, From AHL. Oxygen delivery does not limit cardiac performance during high work states. Am J Physiol Heart Circ Physiol 1999;276/(45):H50–H57.

    Google Scholar 

  56. Wyss M, Smeitink J, Wevers RA, Wallimann T. Mitochondrial creatine kinase: A key enzyme of aerobic energy metabolism. Biochem Biophysica Acta 1992;1102:119–166.

    Google Scholar 

  57. Sata M, Sugiura S, Yamashita H, Momomura S-I, Serizawa T. Coupling between myosin ATPase cycle and creatine kinase cycle facilitates cardiac actomyosin sliding in vitro. Circulation 1996;93:310–317.

    Google Scholar 

  58. Bessman SP, Carpenter CL. The creatine-creatine phosphate energy shuttle. Ann Rev Biochim 1985;54:831–862.

    Google Scholar 

  59. Ingwall, JS. Is cardiac failure a consequence of decreased energy reserve? Circulation 1993;87(Suppl VII):VII?58–VII?62.

  60. Chuong DH, Zhang J, Payne RM, Apple F. Post-infarction left ventricular remodeling induces changes in creatine kinase mRNA and protein subunit levels in porcine myocardium. Am J Pathol 1997;151:257–264.

    Google Scholar 

  61. Murakami Y, Zhang J, Eijgelshoven MHJ, Cho YK, Bache RJ. Myocardial creatine kinase kinetics in hearts with severe LVremodeling. AmJ Physiology 1999;276:H892–H900.

    Google Scholar 

  62. Portman MA, Ning XH. Maturational changes in respiratory control through creatine kinase in heart in vivo. Am J Physiol 1992;263:C453–C460.

    Google Scholar 

  63. Tian R, Ingwall JS. Energetic basis for reduced contractile reserve in isolated rat hearts. Am J Physiol/Heart Circ Physiol 1996;270(39):H1207–H1216.

    Google Scholar 

  64. Kapelko VI, Kupriyanov VV, Novikova NA, Lakomkin VL, Steinschneider AY, Severina MY, Veksler VI, Saks VA. The cardiac contractile failure induced by chronic creatine and phosphocreatine deficiency. J Mol Cell Cardiol 1988;20:465–479.

    Google Scholar 

  65. Saupe KW, Spindler M, Tian R, Ingwall JS. Impaired cardiac energetics in mice lacking muscle-specific isoenzymes of creatine kinase. Cir Ress 1998;82:898–907

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Bache, R.J. The Molecular Energetics of the Failing Heart from Animal Models—Large Animal Models. Heart Fail Rev 4, 255–267 (1999). https://doi.org/10.1023/A:1009814124314

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009814124314

Navigation