Skip to main content

Advertisement

Log in

Myocardial energy depletion and dynamic systolic dysfunction in hypertrophic cardiomyopathy

  • Opinion
  • Published:

From Nature Reviews Cardiology

View current issue Sign up to alerts

Abstract

Evidence indicates that anatomical and physiological phenotypes of hypertrophic cardiomyopathy (HCM) stem from genetically mediated, inefficient cardiomyocyte energy utilization, and subsequent cellular energy depletion. However, HCM often presents clinically with normal left ventricular (LV) systolic function or hyperkinesia. If energy inefficiency is a feature of HCM, why is it not manifest as resting LV systolic dysfunction? In this Perspectives article, we focus on an idiosyncratic form of reversible systolic dysfunction provoked by LV obstruction that we have previously termed the 'lobster claw abnormality' — a mid-systolic drop in LV Doppler ejection velocities. In obstructive HCM, this drop explains the mid-systolic closure of the aortic valve, the bifid aortic pressure trace, and why patients cannot increase stroke volume with exercise. This phenomenon is characteristic of a broader phenomenon in HCM that we have termed dynamic systolic dysfunction. It underlies the development of apical aneurysms, and rare occurrence of cardiogenic shock after obstruction. We posit that dynamic systolic dysfunction is a manifestation of inefficient cardiomyocyte energy utilization. Systolic dysfunction is clinically inapparent at rest; however, it becomes overt through the mechanism of afterload mismatch when LV outflow obstruction is imposed. Energetic insufficiency is also present in nonobstructive HCM. This paradigm might suggest novel therapies. Other pathways that might be central to HCM, such as myofilament Ca2+ hypersensitivity, and enhanced late Na+ current, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Mid-systolic drop in ejection velocities.
Figure 2: Left ventricular ejection velocities in early systole and mid-systole in obstructive HCM.
Figure 3: ECG, invasively-measured LVOT pressure gradient, and TDI velocity trace from the basal septum.
Figure 4: Apical aneurysm in mid-LV obstruction.
Figure 5: Acute heart failure and shock.
Figure 6: Postoperative echocardiogram performed 4 months later.
Figure 7: Three proposed central pathophysiological pathways for development of hypertrophic cardiomyopathy phenotype in genetic hypertrophic heart disease.

Similar content being viewed by others

References

  1. Sherrid, M. et al. Treatment of obstructive hypertrophic cardiomyopathy symptoms and gradient resistant to first-line therapy with β-blockade or verapamil. Circ. Heart Fail 6, 694–702 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. O'Mahony, C. et al. The long-term survival and the risks and benefits of implantable cardioverter defibrillators in patients with hypertrophic cardiomyopathy. Heart 98, 116–125 (2012).

    Article  PubMed  Google Scholar 

  3. Maron, B. J. et al. Implantable cardioverter-defibrillators and prevention of sudden cardiac death in hypertrophic cardiomyopathy. JAMA 298, 405–412 (2007).

    CAS  PubMed  Google Scholar 

  4. Geisterfer-Lowrance, A. A. et al. A molecular basis for familial hypertrophic cardiomyopathy: a β cardiac myosin heavy chain gene missense mutation. Cell 62, 999–1006 (1990).

    Article  CAS  PubMed  Google Scholar 

  5. Thierfelder, L. et al. α-tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: a disease of the sarcomere. Cell 77, 701–712 (1994).

    Article  PubMed  Google Scholar 

  6. Marston, S. et al. Evidence from human myectomy samples that MYBPC3 mutations cause hypertrophic cardiomyopathy through haploinsufficiency. Circ. Res. 105, 219–222 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. van Dijk, S. J. et al. Contractile dysfunction irrespective of the mutant protein in human hypertrophic cardiomyopathy with normal systolic function. Circ. Heart Fail. 5, 36–46 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Ferrantini, C. et al. Mechanical and energetic consequences of HCM-causing mutations. J. Cardiovasc. Transl. Res. 2, 441–451 (2009).

    Article  PubMed  Google Scholar 

  9. Witjas-Paalberends, E. R. et al. Faster cross-bridge detachment and increased tension cost in human hypertrophic cardiomyopathy with the R403Q MYH7 mutation. J. Physiol. 592, 3257–3272 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Redwood, C. S. et al. Properties of mutant contractile proteins that cause hypertrophic cardiomyopathy. Cardiovasc. Res. 44, 20–36 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Neubauer, S. The failing heart — an engine out of fuel. N. Engl. J. Med. 356, 1140–1151 (2007).

    Article  PubMed  Google Scholar 

  12. Ashrafian, H. et al. Hypertrophic cardiomyopathy: a paradigm for myocardial energy depletion. Trends Genet. 19, 263–268 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Crilley, J. G. et al. Hypertrophic cardiomyopathy due to sarcomeric gene mutations is characterized by impaired energy metabolism irrespective of the degree of hypertrophy. J. Am. Coll. Cardiol. 41, 1776–1782 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Witjas-Paalberends, E. R. et al. Gene-specific increase in the energetic cost of contraction in hypertrophic cardiomyopathy caused by thick filament mutations. Cardiovasc. Res. 103, 248–257 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Ashrafian, H. et al. Disease pathways and novel therapeutic targets in hypertrophic cardiomyopathy. Circ. Res. 109, 86–96 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Levine, T. B. & Levine, A. B. Metabolic Syndrome and Cardiovascular Disease 2nd ed (Wiley-Blackwell, 2013).

    Google Scholar 

  17. Jung, W. I. et al. 31PNMR spectroscopy detects metabolic abnormalities in asymptomatic patients with hypertrophic cardiomyopathy. Circulation 97, 2536–2542 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Singh, S. et al. Cardiac energetic impairment in heart disease and the potential role of metabolic modulators: a review for clinicians. Circ. Cardiovasc. Genet. 7, 720–728 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Neubauer, S. et al. Myocardial phosphocreatine-to-ATP ratio is a predictor of mortality in patients with dilated cardiomyopathy. Circulation 96, 2190–2196 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Timmer, S. A. et al. Determinants of myocardial energetics and efficiency in symptomatic hypertrophic cardiomyopathy. Eur. J. Nucl. Med. Mol. Imaging 37, 779–788 (2010).

    Article  PubMed  Google Scholar 

  21. Ishiwata, S. et al. Mechanical efficiency in hypertrophic cardiomyopathy assessed by positron emission tomography with carbon 11 acetate. Am. Heart J. 133, 497–503 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Timmer, S. A. & Knaapen, P. Coronary microvascular function, myocardial metabolism, and energetics in hypertrophic cardiomyopathy: insights from positron emission tomography. Eur. Heart J. Cardiovasc. Imaging 14, 95–101 (2013).

    Article  PubMed  Google Scholar 

  23. Blair, E. et al. Mutations in the γ2 subunit of AMP-activated protein kinase cause familial hypertrophic cardiomyopathy: evidence for the central role of energy compromise in disease pathogenesis. Hum. Mol. Genet. 10, 1215–1220 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Hardie, D. G. et al. AMP-activated protein kinase — development of the energy sensor concept. J. Physiol. 574, 7–15 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Merante, F. et al. Maternally inherited hypertrophic cardiomyopathy due to a novel T-to-C transition at nucleotide 9997 in the mitochondrial tRNA(glycine) gene. Am. J. Hum. Genet. 55, 437–446 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Lucas, D. T. et al. Alterations in mitochondrial function in a mouse model of hypertrophic cardiomyopathy. Am. J. Physiol. Heart Circ. Physiol. 284, H575–H583 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Unno, K. et al. Relation of functional and morphological changes in mitochondria to myocardial contractile and relaxation reserves in asymptomatic to mildly symptomatic patients with hypertrophic cardiomyopathy. Eur. Heart J. 30, 1853–1862 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Lodi, R. et al. Deficit of in vivo mitochondrial ATP production in patients with Friedreich ataxia. Proc. Natl Acad. Sci. USA 96, 11492–11495 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Lodi, R. et al. Cardiac energetics are abnormal in Friedreich ataxia patients in the absence of cardiac dysfunction and hypertrophy: an in vivo31P magnetic resonance spectroscopy study. Cardiovasc. Res. 52, 111–119 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Bunse, M. et al. Cardiac energetics correlates to myocardial hypertrophy in Friedreich's ataxia. Ann. Neurol. 53, 121–123 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Lan, F. et al. Abnormal calcium handling properties underlie familial hypertrophic cardiomyopathy pathology in patient-specific induced pluripotent stem cells. Cell Stem Cell 12, 101–113 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hoskins, A. C. et al. Normal passive viscoelasticity but abnormal myofibrillar force generation in human hypertrophic cardiomyopathy. J. Mol. Cell. Cardiol. 49, 737–745 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Matsumura, Y. et al. Left ventricular diastolic function assessed using Doppler tissue imaging in patients with hypertrophic cardiomyopathy: relation to symptoms and exercise capacity. Heart 87, 247–251 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Spindler, M. et al. Diastolic dysfunction and altered energetics in the αMHC403/+ mouse model of familial hypertrophic cardiomyopathy. J. Clin. Invest. 101, 1775–1783 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Javadpour, M. M. et al. Decreased energetics in murine hearts bearing the R92Q mutation in cardiac troponin T. J. Clin. Invest. 112, 768–775 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Günal, N. et al. Heart disease in Friedreich's ataxia: a clinical and echocardiographic study. Acta Paediatr. Jpn 38, 308–311 (1996).

    Article  PubMed  Google Scholar 

  37. Unverferth, D. V. et al. Morphologic and functional characteristics of the heart in Friedreich's ataxia. Am. J. Med. 82, 5–10 (1987).

    Article  CAS  PubMed  Google Scholar 

  38. Alves, M. L. et al. Desensitization of myofilaments to Ca2+ as a therapeutic target for hypertrophic cardiomyopathy with mutations in thin filament proteins. Circ. Cardiovasc. Genet. 7, 132–143 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tong, C. W. et al. Phosphorylation of cardiac myosin-binding protein-C is a critical mediator of diastolic function. Circ. Heart Fail. 8, 582–594 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Coppini, R. et al. Late sodium current inhibition reverses electromechanical dysfunction in human hypertrophic cardiomyopathy. Circulation 127, 575–584 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Olivotto, I. et al. Spectrum and clinical significance of systolic function and myocardial fibrosis assessed by cardiovascular magnetic resonance in hypertrophic cardiomyopathy. Am. J. Cardiol. 106, 261–267 (2010).

    Article  PubMed  Google Scholar 

  42. Abozguia, K. et al. Left ventricular strain and untwist in hypertrophic cardiomyopathy: relation to exercise capacity. Am. Heart J. 159, 825–832 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Pelliccia, F. et al. Cumulative exercise-induced left ventricular systolic and diastolic dysfunction in hypertrophic cardiomyopathy. Int. J. Cardiol. 122, 76–78 (2007).

    Article  PubMed  Google Scholar 

  44. Sakata, K. et al. Exercise-induced systolic dysfunction in patients with non-obstructive hypertrophic cardiomyopathy and mutations in the cardiac troponin genes. Heart 94, 1282–1287 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Okeie, K. et al. Left ventricular systolic dysfunction during exercise and dobutamine stress in patients with hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 36, 856–863 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Dass, S. et al. Exacerbation of cardiac energetic impairment during exercise in hypertrophic cardiomyopathy: a potential mechanism for diastolic dysfunction. Eur. Heart J. 36, 1547–1554 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Sherrid, M. V. et al. Mid-systolic drop in left ventricular ejection velocity in obstructive hypertrophic cardiomyopathy — the lobster claw abnormality. J. Am. Soc. Echocardiogr. 10, 707–712 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Barac, I. et al. Effect of obstruction on longitudinal left ventricular shortening in hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 49, 1203–1211 (2007).

    Article  PubMed  Google Scholar 

  49. Sherrid, M. V. et al. Reflections of inflections in hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 54, 212–219 (2009).

    Article  PubMed  Google Scholar 

  50. Maron, B. J. et al. Dynamic subaortic obstruction in hypertrophic cardiomyopathy: analysis by pulsed Doppler echocardiography. J. Am. Coll. Cardiol. 6, 1–18 (1985).

    Article  CAS  PubMed  Google Scholar 

  51. Conklin, H. M. et al. Biphasic left ventricular outflow and its mechanism in hypertrophic obstructive cardiomyopathy. J. Am. Soc. Echocardiogr. 17, 375–383 (2004).

    Article  PubMed  Google Scholar 

  52. Breithardt, O. A. et al. Mid systolic septal deceleration in hypertrophic cardiomyopathy: clinical value and insights into the pathophysiology of outflow tract obstruction by tissue Doppler echocardiography. Heart 91, 379–380 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ross, J. Afterload mismatch in aortic and mitral valve disease: implications for surgical therapy. J. Am. Coll. Cardiol. 5, 811–826 (1985).

    Article  PubMed  Google Scholar 

  54. Beyerbacht, H. P. et al. Aortic valve replacement in patients with aortic valve stenosis improves myocardial metabolism and diastolic function. Radiology 219, 637–643 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Mahmod, M. et al. Myocardial perfusion and oxygenation are impaired during stress in severe aortic stenosis and correlate with impaired energetics and subclinical left ventricular dysfunction. J. Cardiovasc. Magn. Reson. 16, 29 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ashrafian, H. et al. Aortic stenosis with impaired ventricular function manifests impaired cardiac metabolism: implications for prognosis and surgical intervention. Heart 95 (Suppl. I), A1–A87 (2009).

    Google Scholar 

  57. Mahmod, M. et al. Myocardial steatosis and left ventricular contractile dysfunction in patients with severe aortic stenosis. Circ. Cardiovasc. Imag. 6, 808–816 (2013).

    Article  Google Scholar 

  58. Lele, S. S. et al. Exercise capacity in hypertrophic cardiomyopathy. Role of stroke volume limitation, heart rate, and diastolic filling characteristics. Circulation. 92, 2886–2894 (1995).

    Article  CAS  PubMed  Google Scholar 

  59. Cannon, R. O. 3rd et al. Effect of surgical reduction of left ventricular outflow obstruction on hemodynamics, coronary flow, and myocardial metabolism in hypertrophic cardiomyopathy. Circulation 79, 766–775 (1989).

    Article  PubMed  Google Scholar 

  60. Cannon, R. O. 3rd et al. Myocardial ischemia in patients with hypertrophic cardiomyopathy: contribution of inadequate vasodilator reserve and elevated left ventricular filling pressures. Circulation 71, 234–243 (1985).

    Article  PubMed  Google Scholar 

  61. O'Gara, P. T. et al. Myocardial perfusion abnormalities in patients with hypertrophic cardiomyopathy: assessment with thallium-201 emission computed tomography. Circulation 76, 1214–1223 (1987).

    Article  CAS  PubMed  Google Scholar 

  62. Cecchi, F. et al. Coronary microvascular dysfunction and prognosis in hypertrophic cardiomyopathy. N. Engl. J. Med. 349, 1027–1035 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Timmer, S. A. et al. Carriers of the hypertrophic cardiomyopathy MYBPC3 mutation are characterized by reduced myocardial efficiency in the absence of hypertrophy and microvascular dysfunction. Eur. J. Heart Fail. 13, 1283–1289 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Po, J. R. et al. Doppler systolic signal void in hypertrophic cardiomyopathy: apical aneurysm, and severe obstruction without elevated intraventricular velocities. J. Am. Soc. Echocardiogr. 28, 1462–1473 (2015).

    Article  PubMed  Google Scholar 

  65. Shah, A. et al. Severe symptoms in mid and apical hypertrophic cardiomyopathy. Echocardiography 26, 922–933 (2009).

    Article  PubMed  Google Scholar 

  66. Maron, M. S. et al. Prevalence, clinical significance and natural history of left ventricular aneurysms in hypertrophic cardiomyopathy. Circulation 18, 1541–1549 (2008).

    Article  Google Scholar 

  67. Dawson, D. K. et al. Tako-tsubo cardiomyopathy: a heart stressed out of energy? JACC Cardiovasc. Imaging 8, 985–987 (2015).

    Article  PubMed  Google Scholar 

  68. Neil, C. J. et al. Relation of delayed recovery of myocardial function after takotsubo cardiomyopathy to subsequent quality of life. Am. J. Cardiol. 115, 1085–1089 (2015).

    Article  PubMed  Google Scholar 

  69. Sherrid, M. V. et al. Mechanism of benefit of negative inotropes in obstructive hypertrophic cardiomyopathy. Circulation 97, 41–47 (1998).

    Article  CAS  PubMed  Google Scholar 

  70. Sherrid, M. V. et al. Reversal of acute systolic dysfunction and cardiogenic shock in hypertrophic cardiomyopathy by surgical relief of obstruction. Echocardiography. 28, E174–E179 (2011).

    Article  PubMed  Google Scholar 

  71. Sasayama, S. et al. Adaptations of the left ventricle to chronic pressure overload. Circ. Res. 38, 172–178 (1976).

    Article  CAS  PubMed  Google Scholar 

  72. Ross, J. Jr. Afterload mismatch and preload reserve: a conceptual framework for the analysis of ventricular function. Prog. Cardiovasc. Dis. 18, 255–264 (1976).

    Article  PubMed  Google Scholar 

  73. Ross, J. Jr & Braunwald, E. The study of left ventricular function in man by increasing resistance to ventricular ejection with angiotensin. Circulation 26, 739–749 (1964).

    Article  Google Scholar 

  74. Mishiro, Y. et al. Use of angiotensin II stress pulsed tissue Doppler imaging to evaluate regional left ventricular contractility in patients with hypertrophic cardiomyopathy. J. Am. Soc. Echocardiol. 13, 1065–1073 (2000).

    Article  CAS  Google Scholar 

  75. Ross, J. Jr et al. Preload, afterload, and the role of afterload mismatch in the descending limb of cardiac function. Eur. J. Cardiol. 4 (Suppl.), 77–86 (1976).

    PubMed  Google Scholar 

  76. Sirenko, S. G. et al. Differential effect of troponin T mutations on the inotropic responsiveness of mouse hearts — role of myofilament Ca2+ sensitivity increase. J. Physiol. 575, 201–213 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Knollman, B. C. et al. Inotropic stimulation induces cardiac dysfunction in transgenic mice expressing a troponin T (I79N) mutation linked to familial hypertrophic cardiomyopathy. J. Biol. Chem. 30, 10039–10048 (2001).

    Article  Google Scholar 

  78. Sequeira, V. et al. Perturbed length-dependent activation in human hypertrophic cardiomyopathy with missense sarcomeric gene mutations. Circ. Res. 112, 1491–1505 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Saumarez, R. C. et al. Ventricular fibrillation in hypertrophic cardiomyopathy is associated with increased fractionation of paced right ventricular electrograms. Circulation 86, 467–474 (1992).

    Article  CAS  PubMed  Google Scholar 

  80. O'Mahony, C. et al. The relation of ventricular arrhythmia electrophysiological characteristics to cardiac phenotype and circadian patterns in hypertrophic cardiomyopathy. Europace 14, 724–733 (2012).

    Article  PubMed  Google Scholar 

  81. Cha, Y. M. et al. Electrophysiologic manifestations of ventricular tachyarrhythmias provoking appropriate defibrillator interventions in high-risk patients with hypertrophic cardiomyopathy. J. Cardiovasc. Electrophysiol. 18, 483–487 (2007).

    Article  PubMed  Google Scholar 

  82. Chan, R. H. et al. Prognostic value of quantitative contrast-enhanced cardiovascular magnetic resonance for the evaluation of sudden death risk in patients with hypertrophic cardiomyopathy. Circulation 130, 484–495 (2014).

    Article  PubMed  Google Scholar 

  83. Wagner, J. A. et al. Calcium-antagonist receptors in the atrial tissue of patients with hypertrophic cardiomyopathy. N. Engl. J. Med. 320, 755–761 (1989).

    Article  CAS  PubMed  Google Scholar 

  84. Brush, J. E. Jr et al. Cardiac norepinephrine kinetics in hypertrophic cardiomyopathy. Circulation 79, 836–844 (1989).

    Article  PubMed  Google Scholar 

  85. Huke, S. & Knollmann, B. C. Increased myofilament Ca2+-sensitivity and arrhythmia susceptibility. J. Mol. Cell. Cardiol. 48, 824–833 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Baudenbacher, F. et al. Myofilament Ca2+ sensitization causes susceptibility to cardiac arrhythmia in mice. J. Clin. Invest. 118, 3893–3903 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Huke, S. et al. Focal energy deprivation underlies arrhythmia susceptibility in mice with calcium-sensitized myofilaments. Circ. Res. 112, 1334–1344 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. Danik, S. B. et al. Electrical remodeling contributes to complex tachyarrhythmias in connexin43-deficient mouse hearts. FASEB J. 22, 1204–1212 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Watkins, H. et al. Inherited cardiomyopathies. N. Engl. J. Med. 364, 1643–1656 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Green, E. M. et al. A small-molecule inhibitor of sarcomere contractility suppresses hypertrophic cardiomyopathy in mice. Science 351, 617–621 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Olivotto, I. et al. Novel approach targeting the complex pathophysiology of hypertrophic cardiomyopathy: the impact of Late Sodium Current Inhibition on Exercise Capacity in Subjects with Symptomatic Hypertrophic Cardiomyopathy (LIBERTY-HCM) Trial. Circ. Heart Fail. 9, e002764 (2016).

    Article  PubMed  Google Scholar 

  92. US National Library of Science. ClinicalTrials.govhttp://www.clinicaltrials.gov/ct2/show/NCT02291237 (2016).

  93. Ormerod, J. O. et al. Impaired energetics in heart failure — a new therapeutic target. Pharmacol. Ther. 119, 264–274 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Tardiff, J. et al. Targets for therapy in sarcomeric cardiomyopathies. Cardiovasc. Res. 105, 457–470 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Abozguia, K. et al. Metabolic modulator perhexiline corrects energy deficiency and improves exercise capacity in symptomatic hypertrophic cardiomyopathy. Circulation 122, 1562–1569 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Gehmlich, K. et al. Changes in the cardiac metabolome caused by perhexiline treatment in a mouse model of hypertrophic cardiomyopathy. Mol. Biosyst. 11, 564–573 (2015).

    Article  CAS  PubMed  Google Scholar 

  97. US National Library of Science. ClinicalTrials.govhttp://www.clinicaltrials.gov/ct2/show/NCT01696370 (2013).

  98. US National Library of Science. ClinicalTrials.govhttp://www.clinicaltrials.gov/ct2/show/NCT01721967 (2016).

  99. Ho, C. Y. et al. Diltiazem treatment for pre-clinical hypertrophic cardiomyopathy sarcomere mutation carriers: a pilot randomized trial to modify disease expression. JACC Heart Fail. 3, 180–188 (2015).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors researched data for the article, discussed its content, wrote the manuscript, and reviewed and edited it before submission.

Corresponding author

Correspondence to Mark V. Sherrid.

Ethics declarations

Competing interests

M.P.F. is the inventor of method of use patents for perhexiline in heart muscle diseases; these patents are owned by Heart Metabolics in which he has no financial interest. M.V.S. has provided protocol consultation to Heart Metabolics. J.O.M.O. declares no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ormerod, J., Frenneaux, M. & Sherrid, M. Myocardial energy depletion and dynamic systolic dysfunction in hypertrophic cardiomyopathy. Nat Rev Cardiol 13, 677–687 (2016). https://doi.org/10.1038/nrcardio.2016.98

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2016.98

  • Springer Nature Limited

This article is cited by

Navigation