Skip to main content

The Failing Heart: Is It an Inefficient Engine or an Engine Out of Fuel?

  • Chapter
  • First Online:
Cardiac Remodeling

Abstract

To meet its high-energy demand, the heart is very flexible in its choice of energy substrates. It can use a variety of energy substrates which include fatty acids, glucose, lactate, pyruvate, ketones, and amino acids. In the failing heart, significant changes in cardiac energy substrate metabolism occur, although there is no consensus as to exactly what these changes are. Energy starvation in heart failure has been extensively discussed, where reduced oxygen and energy substrate delivery to the heart, reduced cardiac energy substrate uptake, reduced mitochondrial oxidative phosphorylation, and decreased metabolic flexibility have been implicated as contributing factors to the declining mechanical function in heart failure. In addition to energy starvation, there is also the possibility of inefficient energy utilization in the failing heart. This inefficiency can occur at the level of ATP production where the preferential dependence on fatty acids consumes more oxygen per unit ATP and/or the overexpression of uncoupling proteins can increase energy loss as heat rather than ATP production. Increased ATP utilization for non-contractile purposes, such as ionic homeostasis and futile cycling of fatty acids, can also contribute to inefficiency in the failing heart. Impaired phosphocreatine/creatine kinase shuttle activity may also contribute to inefficient transport of ATP from the mitochondria to the contractile myofibrils. The degree and type of energy inefficiency in the failing heart are likely dependent on the pathogenesis and severity of heart failure. In this chapter, we review the various contributors to energy inefficiency in heart failure and discuss the potential to optimize cardiac energy metabolism as a potential treatment for heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Neely JR, Morgan HE (1974) Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. Annu Rev Physiol 36:413–459

    PubMed  CAS  Google Scholar 

  2. Opie LH (1968) Metabolism of the heart in health and disease. I. Am Heart J 76:685–698

    PubMed  CAS  Google Scholar 

  3. Opie LH (1969) Metabolism of the heart in health and disease. II. Am Heart J 77:100–122 contd

    Google Scholar 

  4. Opie LH (1969) Metabolism of the heart in health and disease. III. Am Heart J 77:383–410 contd

    Google Scholar 

  5. Lei B, Lionetti V, Young ME et al (2004) Paradoxical downregulation of the glucose oxidation pathway despite enhanced flux in severe heart failure. J Mol Cell Cardiol 36:567–576

    PubMed  CAS  Google Scholar 

  6. Osorio JC, Stanley WC, Linke A et al (2002) Impaired myocardial fatty acid oxidation and reduced protein expression of retinoid X receptor-alpha in pacing-induced heart failure. Circulation 106:606–612

    PubMed  CAS  Google Scholar 

  7. Dodd MS, Ball DR, Schroeder MA et al (2012) In vivo alterations in cardiac metabolism and function in the spontaneously hypertensive rat heart. Cardiovasc Res 95(1):69–76

    PubMed  CAS  Google Scholar 

  8. Xu J, Nie HG, Zhang XD et al (2011) Down-regulated energy metabolism genes associated with mitochondria oxidative phosphorylation and fatty acid metabolism in viral cardiomyopathy mouse heart. Mol Biol Rep 38:4007–4013

    PubMed  CAS  Google Scholar 

  9. Li X, Arslan F, Ren Y et al (2012) Metabolic adaptation to a disruption in oxygen supply during myocardial ischemia and reperfusion is underpinned by temporal and quantitative changes in the cardiac proteome. J Proteome Res 11:2331–2346

    PubMed  CAS  Google Scholar 

  10. Gertz EW, Wisneski JA, Stanley WC, Neese RA (1988) Myocardial substrate utilization during exercise in humans. Dual carbon-labeled carbohydrate isotope experiments. J Clin Invest 82:2017–2025

    PubMed  CAS  Google Scholar 

  11. Stanley WC, Lopaschuk GD, Hall JL, McCormack JG (1997) Regulation of myocardial carbohydrate metabolism under normal and ischaemic conditions otential for pharmacological interventions. Cardiovasc Res 33:243–257

    PubMed  CAS  Google Scholar 

  12. Wisneski JA, Gertz EW, Neese RA et al (1985) Dual carbon-labeled isotope experiments using D-[6-14C] glucose and L-[1,2,3-13C3] lactate: a new approach for investigating human myocardial metabolism during ischemia. J Am Coll Cardiol 5:1138–1146

    PubMed  CAS  Google Scholar 

  13. Wisneski JA, Gertz EW, Neese RA et al (1985) Metabolic fate of extracted glucose in normal human myocardium. J Clin Invest 76:1819–1827

    PubMed  CAS  Google Scholar 

  14. Wisneski JA, Stanley WC, Neese RA, Gertz EW (1990) Effects of acute hyperglycemia on myocardial glycolytic activity in humans. J Clin Invest 85:1648–1656

    PubMed  CAS  Google Scholar 

  15. Maciver DH, Dayer MJ, Harrison AJ (2012) A general theory of acute and chronic heart failure. Int J Cardiol. E pub ahead of print. DOI 10.1016/j.ijcard.2012.03.093

  16. Francis GS, McDonald KM, Cohn JN (1993) Neurohumoral activation in preclinical heart failure Remodeling and the potential for intervention. Circulation 87(suppl 5):IV90–IV96

    PubMed  CAS  Google Scholar 

  17. Kemp CD, Conte JV (2012) The pathophysiology of heart failure. Cardiovasc Pathol 21(5):365–371

    PubMed  CAS  Google Scholar 

  18. Houser SR, Margulies KB, Murphy AM et al (2012) Animal models of heart failure: a scientific statement from the American Heart Association. Circ Res 111(1):131–150

    PubMed  CAS  Google Scholar 

  19. Neubauer S (2007) The failing heart–an engine out of fuel. N Engl J Med 356:1140–1151

    PubMed  Google Scholar 

  20. Lopaschuk GD, Ussher JR, Folmes CD et al (2010) Myocardial fatty acid metabolism in health and disease. Physiol Rev 90:207–258

    PubMed  CAS  Google Scholar 

  21. Stanley WC, Recchia FA, Lopaschuk GD (2005) Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 85:1093–1129

    PubMed  CAS  Google Scholar 

  22. Ingwall JS (2009) Energy metabolism in heart failure and remodelling. Cardiovasc Res 81:412–419

    PubMed  CAS  Google Scholar 

  23. Jaswal JS, Keung W, Wang W et al (2011) Targeting fatty acid and carbohydrate oxidation - a novel therapeutic intervention in the ischemic and failing heart. Biochim Biophys Acta 1813(7):1333–1350

    PubMed  CAS  Google Scholar 

  24. Strumia E, Pelliccia F, D’Ambrosio G (2012) Creatine phosphate: pharmacological and ­clinical perspectives. Adv Ther 29:99–123

    PubMed  CAS  Google Scholar 

  25. Guzun R, Timohhina N, Tepp K et al (2011) Systems bioenergetics of creatine kinase networks: physiological roles of creatine and phosphocreatine in regulation of cardiac cell function. Amino Acids 40:1333–1348

    PubMed  CAS  Google Scholar 

  26. Sahlin K, Harris RC (2011) The creatine kinase reaction: a simple reaction with functional complexity. Amino Acids 40:1363–1367

    PubMed  CAS  Google Scholar 

  27. Boehm E, Chan S, Monfared M et al (2003) Creatine transporter activity and content in the rat heart supplemented by and depleted of creatine. Am J Physiol Endocrinol Metab 284:E399–E406

    PubMed  CAS  Google Scholar 

  28. Rossi AM, Eppenberger HM, Volpe P et al (1990) Muscle-type MM creatine kinase is specifically bound to sarcoplasmic reticulum and can support Ca2+ uptake and regulate local ATP/ADP ratios. J Biol Chem 265:5258–5266

    PubMed  CAS  Google Scholar 

  29. Wallimann T, Wyss M, Brdiczka D et al (1992) Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochem J 281(Pt 1):21–40

    PubMed  CAS  Google Scholar 

  30. Ventura-Clapier R, Garnier A, Veksler V, Joubert F (2011) Bioenergetics of the failing heart. Biochim Biophys Acta 1813:1360–1372

    PubMed  CAS  Google Scholar 

  31. Tuunanen H, Knuuti J (2011) Metabolic remodelling in human heart failure. Cardiovasc Res 90:251–257

    PubMed  CAS  Google Scholar 

  32. Ohte N, Narita H, Iida A et al (2009) Impaired myocardial oxidative metabolism in the remote normal region in patients in the chronic phase of myocardial infarction and left ventricular remodeling. J Nucl Cardiol 16:73–81

    PubMed  Google Scholar 

  33. Hasegawa S, Yamamoto K, Sakata Y et al (2008) Effects of cardiac energy efficiency in diastolic heart failure: assessment with positron emission tomography with 11C-acetate. Hypertens Res 31:1157–1162

    PubMed  Google Scholar 

  34. van Bilsen M, van Nieuwenhoven FA, van der Vusse GJ (2009) Metabolic remodelling of the failing heart: beneficial or detrimental? Cardiovasc Res 81:420–428

    PubMed  Google Scholar 

  35. Schulz TJ, Westermann D, Isken F et al (2010) Activation of mitochondrial energy metabolism protects against cardiac failure. Aging (Albany NY) 2:843–853

    CAS  Google Scholar 

  36. Jullig M, Hickey AJ, Chai CC et al (2008) Is the failing heart out of fuel or a worn engine running rich? A study of mitochondria in old spontaneously hypertensive rats. Proteomics 8:2556–2572

    PubMed  CAS  Google Scholar 

  37. Ingwall JS, Weiss RG (2004) Is the failing heart energy starved? On using chemical energy to support cardiac function. Circ Res 95:135–145

    PubMed  CAS  Google Scholar 

  38. Ingwall JS (2006) Energetics of the failing heart: new insights using genetic modification in the mouse. Arch Mal Coeur Vaiss 99:839–847

    PubMed  CAS  Google Scholar 

  39. Taegtmeyer H, Wilson CR, Razeghi P, Sharma S (2005) Metabolic energetics and genetics in the heart. Ann N Y Acad Sci 1047:208–218

    PubMed  CAS  Google Scholar 

  40. Bing RJ, Hammond MM (1949) The measurement of coronary blood flow, oxygen consumption, and efficiency of the left ventricle in man. Am Heart J 38:1–24

    PubMed  CAS  Google Scholar 

  41. Suga H (2003) Cardiac energetics: from E(max) to pressure-volume area. Clin Exp Pharmacol Physiol 30:580–585

    PubMed  CAS  Google Scholar 

  42. Suga H (1990) Ventricular energetics. Physiol Rev 70:247–277

    PubMed  CAS  Google Scholar 

  43. Burkhoff D, Weiss RG, Schulman SP et al (1991) Influence of metabolic substrate on rat heart function and metabolism at different coronary flows. Am J Physiol 261:H741–H750

    PubMed  CAS  Google Scholar 

  44. Korvald C, Elvenes OP, Myrmel T (2000) Myocardial substrate metabolism influences left ventricular energetics in vivo. Am J Physiol Heart Circ Physiol 278:H1345–H1351

    PubMed  CAS  Google Scholar 

  45. Lammerant J, Huynh-Thu T, Kolanowski J (1985) Inhibitory effects of the D(−)isomer of 3-hydroxybutyrate on cardiac non-esterified fatty acid uptake and oxygen demand induced by norepinephrine in the intact dog. J Mol Cell Cardiol 17:421–433

    PubMed  CAS  Google Scholar 

  46. Mjos OD (1971) Effect of free fatty acids on myocardial function and oxygen consumption in intact dogs. J Clin Invest 50:1386–1389

    PubMed  CAS  Google Scholar 

  47. Mjos OD (1971) Effect of inhibition of lipolysis on myocardial oxygen consumption in the presence of isoproterenol. J Clin Invest 50:1869–1873

    PubMed  CAS  Google Scholar 

  48. Mjos OD, Kjekshus J (1971) Increased local metabolic rate by free fatty acids in the intact dog heart. Scand J Clin Lab Invest 28:389–393

    PubMed  CAS  Google Scholar 

  49. Simonsen S, Kjekshus JK (1978) The effect of free fatty acids on myocardial oxygen consumption during atrial pacing and catecholamine infusion in man. Circulation 58:484–491

    PubMed  CAS  Google Scholar 

  50. Hinkle PC (2005) P/O ratios of mitochondrial oxidative phosphorylation. Biochim Biophys Acta 1706:1–11

    PubMed  CAS  Google Scholar 

  51. Kadenbach B (2003) Intrinsic and extrinsic uncoupling of oxidative phosphorylation. Biochim Biophys Acta 1604:77–94

    PubMed  CAS  Google Scholar 

  52. Bouillaud F, Combes-George M, Ricquier D (1983) Mitochondria of adult human brown adipose tissue contain a 32 000-Mr uncoupling protein. Biosci Rep 3:775–780

    PubMed  CAS  Google Scholar 

  53. Enerback S (2010) Brown adipose tissue in humans. Int J Obes (Lond) 34(Suppl 1):S43–S46

    Google Scholar 

  54. McLeod CJ, Aziz A, Hoyt RF et al (2005) Uncoupling proteins 2 and 3 function in concert to augment tolerance to cardiac ischemia. J Biol Chem 280:33470–33476

    PubMed  CAS  Google Scholar 

  55. Boehm EA, Jones BE, Radda GK et al (2001) Increased uncoupling proteins and decreased efficiency in palmitate-perfused hyperthyroid rat heart. Am J Physiol Heart Circ Physiol 280:H977–H983

    PubMed  CAS  Google Scholar 

  56. Cole MA, Murray AJ, Cochlin LE et al (2011) A high fat diet increases mitochondrial fatty acid oxidation and uncoupling to decrease efficiency in rat heart. Basic Res Cardiol 106:447–457

    PubMed  CAS  Google Scholar 

  57. Laskowski KR, Russell RR (2008) Uncoupling proteins in heart failure. Curr Heart Fail Rep 5:75–79

    PubMed  CAS  Google Scholar 

  58. Li N, Wang J, Gao F et al (2009) The relationship between uncoupling protein 2 expression and myocardial high energy phosphates content in abdominal aorta constriction induced heart failure rats. Zhonghua Xin Xue Guan Bing Za Zhi 37:1108–1112

    PubMed  CAS  Google Scholar 

  59. Turner JD, Gaspers LD, Wang G, Thomas AP (2010) Uncoupling protein-2 modulates ­myocardial excitation-contraction coupling. Circ Res 106:730–738

    PubMed  CAS  Google Scholar 

  60. Murray AJ, Cole MA, Lygate CA et al (2008) Increased mitochondrial uncoupling proteins, respiratory uncoupling and decreased efficiency in the chronically infarcted rat heart. J Mol Cell Cardiol 44:694–700

    PubMed  CAS  Google Scholar 

  61. Saddik M, Lopaschuk GD (1991) Myocardial triglyceride turnover and contribution to energy substrate utilization in isolated working rat hearts. J Biol Chem 266:8162–8170

    PubMed  CAS  Google Scholar 

  62. Saddik M, Lopaschuk GD (1992) Myocardial triglyceride turnover during reperfusion of isolated rat hearts subjected to a transient period of global ischemia. J Biol Chem 267:3825–3831

    PubMed  CAS  Google Scholar 

  63. Himms-Hagen J, Harper ME (2001) Physiological role of UCP3 may be export of fatty acids from mitochondria when fatty acid oxidation predominates: an hypothesis. Exp Biol Med (Maywood) 226:78–84

    CAS  Google Scholar 

  64. Schrauwen P, Hoeks J, Hesselink MK (2006) Putative function and physiological relevance of the mitochondrial uncoupling protein-3: involvement in fatty acid metabolism? Prog Lipid Res 45:17–41

    PubMed  CAS  Google Scholar 

  65. Rame JE, Barouch LA, Sack MN et al (2011) Caloric restriction in leptin deficiency does not correct myocardial steatosis: failure to normalize PPAR{alpha}/PGC1{alpha} and thermogenic glycerolipid/fatty acid cycling. Physiol Genomics 43:726–738

    PubMed  CAS  Google Scholar 

  66. Oka T, Lam VH, Zhang L et al (2012) Cardiac hypertrophy in the newborn delays the maturation of fatty acid beta-oxidation and compromises postischemic functional recovery. Am J Physiol Heart Circ Physiol 302:H1784–H1794

    PubMed  CAS  Google Scholar 

  67. Razeghi P, Young ME, Alcorn JL et al (2001) Metabolic gene expression in fetal and failing human heart. Circulation 104:2923–2931

    PubMed  CAS  Google Scholar 

  68. Rajabi M, Kassiotis C, Razeghi P, Taegtmeyer H (2007) Return to the fetal gene program protects the stressed heart: a strong hypothesis. Heart Fail Rev 12:331–343

    PubMed  CAS  Google Scholar 

  69. Taegtmeyer H, Sen S, Vela D (2010) Return to the fetal gene program: a suggested metabolic link to gene expression in the heart. Ann N Y Acad Sci 1188:191–198

    PubMed  CAS  Google Scholar 

  70. Dai DF, Hsieh EJ, Liu Y et al (2012) Mitochondrial proteome remodelling in pressure overload-induced heart failure: the role of mitochondrial oxidative stress. Cardiovasc Res 93:79–88

    PubMed  CAS  Google Scholar 

  71. Moravec J, El Alaoui-Talibi Z, Moravec M, Guendouz A (1996) Control of oxidative metabolism in volume-overloaded rat hearts: effect of pretreatment with propionyl-L-carnitine. Adv Exp Med Biol 388:205–212

    PubMed  CAS  Google Scholar 

  72. El Alaoui-Talibi Z, Guendouz A, Moravec M, Moravec J (1997) Control of oxidative metabolism in volume-overloaded rat hearts: effect of propionyl-L-carnitine. Am J Physiol 272:H1615–H1624

    PubMed  CAS  Google Scholar 

  73. Wang J, Bai L, Li J et al (2009) Proteomic analysis of mitochondria reveals a metabolic switch from fatty acid oxidation to glycolysis in the failing heart. Sci China C Life Sci 52:1003–1010

    PubMed  CAS  Google Scholar 

  74. Baartscheer A, Schumacher CA, Coronel R, Fiolet JW (2011) The driving force of the Na/Ca-exchanger during metabolic inhibition. Front Physiol 2:10

    PubMed  CAS  Google Scholar 

  75. Madrazo JA, Kelly DP (2008) The PPAR trio: regulators of myocardial energy metabolism in health and disease. J Mol Cell Cardiol 44:968–975

    PubMed  CAS  Google Scholar 

  76. Smeets PJ, Teunissen BE, Willemsen PH et al (2008) Cardiac hypertrophy is enhanced in PPAR alpha−/− mice in response to chronic pressure overload. Cardiovasc Res 78:79–89

    PubMed  CAS  Google Scholar 

  77. Watanabe K, Fujii H, Takahashi T et al (2000) Constitutive regulation of cardiac fatty acid metabolism through peroxisome proliferator-activated receptor alpha associated with age-dependent cardiac toxicity. J Biol Chem 275:22293–22299

    PubMed  CAS  Google Scholar 

  78. Campbell FM, Kozak R, Wagner A et al (2002) A role for peroxisome proliferator-activated receptor alpha (PPARalpha ) in the control of cardiac malonyl-CoA levels: reduced fatty acid oxidation rates and increased glucose oxidation rates in the hearts of mice lacking PPARalpha are associated with higher concentrations of malonyl-CoA and reduced expression of malonyl-CoA decarboxylase. J Biol Chem 277:4098–4103

    PubMed  CAS  Google Scholar 

  79. Sarma S, Ardehali H, Gheorghiade M (2010) Enhancing the metabolic substrate: PPAR-alpha agonists in heart failure. Heart Fail Rev 17(1):35–43

    Google Scholar 

  80. Young ME, Laws FA, Goodwin GW, Taegtmeyer H (2001) Reactivation of peroxisome proliferator-activated receptor alpha is associated with contractile dysfunction in hypertrophied rat heart. J Biol Chem 276:44390–44395

    PubMed  CAS  Google Scholar 

  81. Morgan EE, Rennison JH, Young ME et al (2006) Effects of chronic activation of peroxisome proliferator-activated receptor-alpha or high-fat feeding in a rat infarct model of heart failure. Am J Physiol Heart Circ Physiol 290:H1899–H1904

    PubMed  CAS  Google Scholar 

  82. Labinskyy V, Bellomo M, Chandler MP et al (2007) Chronic activation of peroxisome ­proliferator-activated receptor-alpha with fenofibrate prevents alterations in cardiac ­metabolic phenotype without changing the onset of decompensation in pacing-induced heart failure. J Pharmacol Exp Ther 321:165–171

    PubMed  CAS  Google Scholar 

  83. Brigadeau F, Gele P, Wibaux M et al (2007) The PPARalpha activator fenofibrate slows down the progression of the left ventricular dysfunction in porcine tachycardia-induced cardiomyopathy. J Cardiovasc Pharmacol 49:408–415

    PubMed  CAS  Google Scholar 

  84. Ogata T, Miyauchi T, Sakai S et al (2004) Myocardial fibrosis and diastolic dysfunction in deoxycorticosterone acetate-salt hypertensive rats is ameliorated by the peroxisome proliferator-activated receptor-alpha activator fenofibrate, partly by suppressing inflammatory responses associated with the nuclear factor-kappa-B pathway. J Am Coll Cardiol 43:1481–1488

    PubMed  CAS  Google Scholar 

  85. Alvarez-Guardia D, Palomer X, Coll T et al (2011) PPARbeta/delta activation blocks lipid-induced inflammatory pathways in mouse heart and human cardiac cells. Biochim Biophys Acta 1811:59–67

    PubMed  CAS  Google Scholar 

  86. Cheng L, Ding G, Qin Q et al (2004) Cardiomyocyte-restricted peroxisome proliferator-activated receptor-delta deletion perturbs myocardial fatty acid oxidation and leads to cardiomyopathy. Nat Med 10:1245–1250

    PubMed  CAS  Google Scholar 

  87. Opie LH, Sack MN (2002) Metabolic plasticity and the promotion of cardiac protection in ischemia and ischemic preconditioning. J Mol Cell Cardiol 34:1077–1089

    PubMed  CAS  Google Scholar 

  88. Mitra B, Panja M (2005) Myocardial metabolism: pharmacological manipulation in myocardial ischaemia. J Assoc Physicians India 53:552–560

    PubMed  CAS  Google Scholar 

  89. Lopaschuk GD (1998) Treating ischemic heart disease by pharmacologically improving cardiac energy metabolism. Presse Med 27:2100–2104

    PubMed  CAS  Google Scholar 

  90. Liu J, Wang P, He L et al (2011) Cardiomyocyte-restricted deletion of PPARbeta/delta in PPARalpha-null mice causes impaired mitochondrial biogenesis and defense, but no further depression of myocardial fatty acid oxidation. PPAR Res 2011:372854

    PubMed  Google Scholar 

  91. Ingwall JS (2006) On the hypothesis that the failing heart is energy starved: lessons learned from the metabolism of ATP and creatine. Curr Hypertens Rep 8:457–464

    PubMed  CAS  Google Scholar 

  92. Hearse DJ (1979) Oxygen deprivation and early myocardial contractile failure: a reassessment of the possible role of adenosine triphosphate. Am J Cardiol 44:1115–1121

    PubMed  CAS  Google Scholar 

  93. Whitman GJ, Kieval RS, Seeholzer S et al (1985) Recovery of left ventricular function after graded cardiac ischemia as predicted by myocardial P-31 nuclear magnetic resonance. Surgery 97:428–435

    PubMed  CAS  Google Scholar 

  94. Ye Y, Gong G, Ochiai K et al (2001) High-energy phosphate metabolism and creatine kinase in failing hearts: a new porcine model. Circulation 103:1570–1576

    PubMed  CAS  Google Scholar 

  95. Edwards LM, Ashrafian H, Korzeniewski B (2011) In silico studies on the sensitivity of myocardial PCr/ATP to changes in mitochondrial enzyme activity and oxygen concentration. Mol Biosyst 7:3335–3342

    PubMed  CAS  Google Scholar 

  96. Fragasso G, Perseghin G, De Cobelli F et al (2006) Effects of metabolic modulation by trimetazidine on left ventricular function and phosphocreatine/adenosine triphosphate ratio in patients with heart failure. Eur Heart J 27:942–948

    PubMed  CAS  Google Scholar 

  97. Winter JL, Castro P, Meneses L et al (2010) Myocardial lipids and creatine measured by magnetic resonance spectroscopy among patients with heart failure. Rev Med Chil 138:1475–1479

    PubMed  CAS  Google Scholar 

  98. Hardy CJ, Weiss RG, Bottomley PA, Gerstenblith G (1991) Altered myocardial high-energy phosphate metabolites in patients with dilated cardiomyopathy. Am Heart J 122:795–801

    PubMed  CAS  Google Scholar 

  99. Neubauer S, Krahe T, Schindler R et al (1992) 31P magnetic resonance spectroscopy in dilated cardiomyopathy and coronary artery disease. Altered cardiac high-energy phosphate metabolism in heart failure. Circulation 86:1810–1818

    PubMed  CAS  Google Scholar 

  100. Weiss RG, Bottomley PA, Hardy CJ, Gerstenblith G (1990) Regional myocardial metabolism of high-energy phosphates during isometric exercise in patients with coronary artery disease. N Engl J Med 323:1593–1600

    PubMed  CAS  Google Scholar 

  101. Yabe T, Mitsunami K, Inubushi T, Kinoshita M (1995) Quantitative measurements of cardiac phosphorus metabolites in coronary artery disease by 31P magnetic resonance spectroscopy. Circulation 92:15–23

    PubMed  CAS  Google Scholar 

  102. Herrmann G, Decherd M (1939) The chemical nature of heart failure. Ann Intern Med 12:1233–1244

    CAS  Google Scholar 

  103. Gong G, Liu J, Liang P et al (2003) Oxidative capacity in failing hearts. Am J Physiol Heart Circ Physiol 285:H541–H548

    PubMed  CAS  Google Scholar 

  104. Leong HS, Brownsey RW, Kulpa JE, Allard MF (2003) Glycolysis and pyruvate oxidation in cardiac hypertrophy–why so unbalanced? Comp Biochem Physiol A Mol Integr Physiol 135:499–513

    PubMed  CAS  Google Scholar 

  105. Taegtmeyer H (2000) Genetics of energetics: transcriptional responses in cardiac metabolism. Ann Biomed Eng 28:871–876

    PubMed  CAS  Google Scholar 

  106. Dutka DP, Pitt M, Pagano D et al (2006) Myocardial glucose transport and utilization in patients with type 2 diabetes mellitus, left ventricular dysfunction, and coronary artery disease. J Am Coll Cardiol 48:2225–2231

    PubMed  CAS  Google Scholar 

  107. Garcia-Rua V, Otero MF, Lear PV et al (2012) Increased expression of Fatty-Acid and calcium metabolism genes in failing human heart. PLoS One 7:e37505

    PubMed  CAS  Google Scholar 

  108. Tuunanen H, Engblom E, Naum A et al (2006) Decreased myocardial free fatty acid uptake in patients with idiopathic dilated cardiomyopathy: evidence of relationship with insulin resistance and left ventricular dysfunction. J Card Fail 12:644–652

    PubMed  CAS  Google Scholar 

  109. Bersin RM, Wolfe C, Kwasman M et al (1994) Improved hemodynamic function and mechanical efficiency in congestive heart failure with sodium dichloroacetate. J Am Coll Cardiol 23:1617–1624

    PubMed  CAS  Google Scholar 

  110. Hermann HP, Pieske B, Schwarzmuller E et al (1999) Haemodynamic effects of intracoronary pyruvate in patients with congestive heart failure: an open study. Lancet 353:1321–1323

    PubMed  CAS  Google Scholar 

  111. Liao R, Jain M, Cui L et al (2002) Cardiac-specific overexpression of GLUT1 prevents the development of heart failure attributable to pressure overload in mice. Circulation 106:2125–2131

    PubMed  CAS  Google Scholar 

  112. Ong HT, Ong LM, Kow FP (2012) Beta-blockers for heart failure: an evidence based review answering practical therapeutic questions. Med J Malaysia 67:7–11

    PubMed  CAS  Google Scholar 

  113. Dery AS, Hamilton LA, Starr JA (2011) Nebivolol for the treatment of heart failure. Am J Health Syst Pharm 68:879–886

    PubMed  CAS  Google Scholar 

  114. Riva N, Lip GY (2011) Nebivolol for the treatment of heart failure. Expert Opin Investig Drugs 20:1733–1746

    PubMed  CAS  Google Scholar 

  115. Klapholz M (2009) Beta-blocker use for the stages of heart failure. Mayo Clin Proc 84:718–729

    PubMed  CAS  Google Scholar 

  116. Zhu P, Lu L, Xu Y, Schwartz GG (2000) Troglitazone improves recovery of left ventricular function after regional ischemia in pigs. Circulation 101:1165–1171

    PubMed  CAS  Google Scholar 

  117. Yue TL, Bao W, Gu JL et al (2005) Rosiglitazone treatment in Zucker diabetic Fatty rats is associated with ameliorated cardiac insulin resistance and protection from ischemia/reperfusion-induced myocardial injury. Diabetes 54:554–562

    PubMed  CAS  Google Scholar 

  118. Sidell RJ, Cole MA, Draper NJ et al (2002) Thiazolidinedione treatment normalizes insulin resistance and ischemic injury in the zucker Fatty rat heart. Diabetes 51:1110–1117

    PubMed  CAS  Google Scholar 

  119. Schmitz FJ, Rosen P, Reinauer H (1995) Improvement of myocardial function and metabolism in diabetic rats by the carnitine palmitoyl transferase inhibitor Etomoxir. Horm Metab Res 27:515–522

    PubMed  CAS  Google Scholar 

  120. Abozguia K, Elliott P, McKenna W et al (2010) Metabolic modulator perhexiline corrects energy deficiency and improves exercise capacity in symptomatic hypertrophic cardiomyopathy. Circulation 122:1562–1569

    PubMed  CAS  Google Scholar 

  121. Horowitz JD, Chirkov YY (2010) Perhexiline and hypertrophic cardiomyopathy: a new horizon for metabolic modulation. Circulation 122:1547–1549

    PubMed  CAS  Google Scholar 

  122. Lee L, Campbell R, Scheuermann-Freestone M et al (2005) Metabolic modulation with perhexiline in chronic heart failure: a randomized, controlled trial of short-term use of a novel treatment. Circulation 112:3280–3288

    PubMed  CAS  Google Scholar 

  123. Zhang L, Lu Y, Jiang H et al (2012) Additional use of trimetazidine in patients with chronic heart failure: a meta-analysis. J Am Coll Cardiol 59:913–922

    PubMed  CAS  Google Scholar 

  124. Fragasso G, Salerno A, Lattuada G et al (2011) Effect of partial inhibition of fatty acid oxidation by trimetazidine on whole body energy metabolism in patients with chronic heart failure. Heart 97:1495–1500

    PubMed  CAS  Google Scholar 

  125. Gao D, Ning N, Niu X et al (2011) Trimetazidine: a meta-analysis of randomised controlled trials in heart failure. Heart 97:278–286

    PubMed  CAS  Google Scholar 

  126. Wenmeng W, Qizhu T (2011) Early administration of trimetazidine may prevent or ameliorate diabetic cardiomyopathy. Med Hypotheses 76:181–183

    PubMed  Google Scholar 

  127. Gunes Y, Guntekin U, Tuncer M, Sahin M (2009) Improved left and right ventricular functions with trimetazidine in patients with heart failure: a tissue Doppler study. Hear Vessel 24:277–282

    Google Scholar 

  128. Sisakian AS, Torgomian AL, Barkhudarian AL (2006) The effects of trimetazidine on left ventricular function and physical exercise tolerance in patients with ischemic cardiomyopathy. Klin Med (Mosk) 84:55–58

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary D. Lopaschuk .

Editor information

Editors and Affiliations

Additional information

Disclosures

None

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Masoud, W.G.T., Clanachan, A.S., Lopaschuk, G.D. (2013). The Failing Heart: Is It an Inefficient Engine or an Engine Out of Fuel?. In: Jugdutt, B., Dhalla, N. (eds) Cardiac Remodeling. Advances in Biochemistry in Health and Disease, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5930-9_4

Download citation

Publish with us

Policies and ethics