Skip to main content
Log in

The structure and conformation of the tryptophanyl diketopiperazines cyclo(Trp–Trp)·C2H6SO and cyclo(Trp–Pro)

  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

The structure and conformation of the cyclic dipeptides [cyclo(L-Trp–L-Trp)·C2H6SO] and cyclo(L-Trp–L-Pro) have been investigated with X-ray crystallographic and spectroscopic methods. Cyclo(L-tryptophanyl-L-tryptophanyl)·DMSO solvate crystallized in the space group P2 12121 with cell dimensions a = 6.193(2), b = 11.545(3), c = 31.117(4) Å. The crystal structure is stabilized by four hydrogen bonds (three intermolecular hydrogen bonds and one intramolecular bond). The first intermolecular bond is between the oxygen of DMSO and the nitrogen of indole ring 2, in contrast to the second intramolecular hydrogen bond between the nitrogen of indole ring 1 and the oxygen of DMSO. The two remaining intermolecular hydrogen bonds are between the nitrogens of the DKP ring and the carbonyl oxygens of the DKP ring. The values of χ1A 1 (−45.764) and χ1A 2 (67.437) indicate an extended side chain conformation for Trp residue 1 (EN) and a folded conformation for Trp residue 2. The DKP ring is more planar than in other cyclic dipeptide compounds (ϕ1 = 11.414, Ψ1 = −7.516, ϕ2 = 12.471, and Ψ2 = −8.256). In cyclo(L-Trp–L-Trp) the Cβ resonance of L-tryptophan (29.88 ppm) is shifted upfield 0.82 ppm when compared with the same resonance in cyclo(L-Trp–L-Gly) (30.7 ppm) and cyclo(L-Leu–L-Trp) (30.7 ppm). Two conformations of cyclo(Trp–Pro) crystallized in the space group P1 with cell dimensions a = 5.422(1), b = 9.902(1), c = 13.443(2) Å, α = 80.42(1), β = 78.61(1), and γ = 89.13(1)°. The conformation of the backbone and the orientation of the aromatic side chains for these conformers are very similar. The DKP rings for both conformers adopt a typical boat conformation in contrast to the flattened chair conformation observed for cyclo(Tyr–Pro) and cyclo(Phe–F-Pro). The tryptophan side chains of these conformers are folded towards the diketopiperazine (DKP) ring. The pyrrolidine ring for conformer 1 can be described as an envelope (Cs–Cβ-endo) conformation in contrast to the pyrrolidine ring symmetry for conformer 2 which is an intermediate between Cs and C2 rather than pure Cs for the proline ring with Cβ-endo and Cγ-exo with respect to C′. The two prolyl rings are puckered at the β-carbon atoms which deviate from the best planes defined by the four remaining atoms. The crystal structures are stabilized by four intermolecular hydrogens bonds. An intermolecular bond between the nitrogen of the indole ring (conformer 1) and the carbonyl oxygen of the DKP ring (conformer 2) was observed. The second hydrogen bond is between the nitrogen of the indole ring (conformer 2) and the carbonyl oxygen of the DKP ring (conformer 1). The last two hydrogens involve the carbonyl oxygens of the DKP rings and the nitrogens of the DKP rings [carbonyl oxygen of DKP ring (conformer 1)––––nitrogen of DKP ring (conformer 2); nitrogen of DKP ring (conformer 1)––––––carbonyl oxygen of DKP ring (conformer 2)].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sammes, P.G. Fortschritte Der Chemie Organischer Naturstoffe 1975, 32, 51.

    Google Scholar 

  2. Krejcarek, G.E.; Dominy, B.H.; Lawton, R.G. Chem. Commun. 1968, 1450.

  3. Häusler, J.; Jahn, R.; Schmidt, U. Chem. Ber. 1978, 111, 361.

    Google Scholar 

  4. Imanishi, Y.; Sugihara, T.; Tanihara, M.; Higashimura, T. Chem. Lett. 1975, 261.

  5. Crescenzi, V.; Cesaro, A.; Russo, E. Int. J. Peptide Protein Res. 1973, 5, 427.

    Google Scholar 

  6. Ottenheijm, H.C.J.; Herscheid, J.D.M.; Kerkhoff, G.P.C.; Spande, T.F. J. Org. Chem. 1976, 41, 3433.

    Google Scholar 

  7. Bodansky, M.; Singler, G.F.; Bodansky, A. J. Am. Chem. Soc. 1973, 95, 2352.

    Google Scholar 

  8. Jensen, N.P.; Gitterman, C.O.; Chen, T.Y.; Arison, B.H.; Beck, J.L. Chem. and Eng. News 1973, April 14, 24.

  9. Edelhoch, H; Bernstein, R.S.; Wilchek, M. J. Biol. Chem. 1968, 243, 5985.

    Google Scholar 

  10. Balasubramanian, R.; Lakshminarayanan, A.V.; Sabesan, M.N.; Tegoni, G.; Venkatesan, K.; Ramachandran, G.N. Int. J. Peptide Protein Res. 1971, 3, 25.

    Google Scholar 

  11. Ashida, T.; Kakudo, M. Bull. Chem. Soc. Jpn. 1974, 47, 1129.

    Google Scholar 

  12. Chacko, K.K.; Swaminathan, S.; Veena, K.R. Curr. Sci. 1983, 52, 660.

    Google Scholar 

  13. Smith, G.D.; Zabrocki, J.; Flak, T.A.; Marshall, G.R. Int. J. Peptide Protein Res. 1991, 37, 191.

    Google Scholar 

  14. Brandl, C.J.; Deber, C.M. Proc. Natl. Acad. Sci. U.S.A. 1986, 83, 917.

    Google Scholar 

  15. North, A.C.T.; Phillips, D.C.; Matthews, F.S. Acta Crystallogr. 1968, 24A, 351.

    Google Scholar 

  16. Sheldrick, G.M. SHELX86. A program for the solution of crystal structures; University of Göttingen: Germany, 1986.

  17. Sheldrick, G.M. SHELX76. Program for crystal structure determination; University of Cambridge: London, 1976.

    Google Scholar 

  18. International Tables for X-ray crystallography, Vol. 4; Kynoch Press: Birmingham, 1974; Cromer, D.T.; Liberman, D. J. Chem. Phys. 1970, 4, 1891.

  19. Johnson, C.K. ORTEP. Report ORNL-3794; Oak Ridge National Laboratory: Tennessee, 1965.

    Google Scholar 

  20. Morris, A.J.; Geddes, A.J.; Sheldrick, M. Cryst. Struct. Commun. 1974, 345.

  21. Webb, L.E.; Lin, C.-F. J. Am. Chem Soc. 1971, 93, 3818.

    Google Scholar 

  22. Lin, C.-F.; Webb, L.E. J. Am. Chem Soc. 1973, 95, 6803.

    Google Scholar 

  23. Gawne, G.; Kenner, G.W.; Rogers, N.H.; Sheppard, R.C.; Titlestad, K. In Peptides; Bricas, E., Ed.; North-Holland Publishing Co.: Amsterdam, 1968; pp. 28–39.

    Google Scholar 

  24. Kopple, K.D.; Ohnishi, M. J. Am. Chem. Soc. 1967, 89, 6193.

    Google Scholar 

  25. Bovey, F.A. Nuclear Magnetic Resonance Spectroscopy; Academic Press: New York, N.Y., 1969; p 67.

    Google Scholar 

  26. Sletten, E. J. Amer. Chem. Soc. 1970, 92, 172.

    Google Scholar 

  27. Degeilh, R.; Marsh, R.E. Acta Crystallogr. 1959, 12, 1007.

    Google Scholar 

  28. Jankowska, R.; Ciarkowski, J. Int. J. Peptide Protein Res. 1987, 30, 61.

    Google Scholar 

  29. Gdaniec, M. Pol. J. Chem. 1981, 55, 1795.

    Google Scholar 

  30. Milne, P.J.; Oliver, D.W.; Roos, H.M. J. Crystallogr. Spectroscop. Res. 1992, 22, 643.

    Google Scholar 

  31. Ciarkowski, J.; Gdaniec, M.; Kolodziejczyk, A.; Liberek, B.; Borremans, F.A.M.; Anteunis, M.J.O. Int. J. Peptide Protein Res. 1990, 36, 285.

    Google Scholar 

  32. Mazza, F.; Lucente, G.; Pinnen, F.; Zanotti, G. Acta Crystallogr 1984, C40, 1974.

    Google Scholar 

  33. Shamala, N.; Guru Row, T.N.; Venkatesan, K. Acta Crystallogr 1976, B32, 3267.

    Google Scholar 

  34. Garbay-Jaurequiberry, C.; Arnoux, B.; Prange, T.; Wehri-Altenburger, S.; Pascard, C.; Roques, B.P. J. Am. Chem. Soc. 1980, 102, 1827.

    Google Scholar 

  35. Miyazawa, T. In Polyamino acids, Polypeptides and Proteins; Stahnman, M.A., Ed.; The University of Wisconsin Press: Madison, 1962; p 218.

    Google Scholar 

  36. Susi, H. In Structure and Stability of Biological Macromolecules; Timasheff, S.N.; Fasman, G.D., Eds.; Marcel Dekker: New York, 1969; p 575.

    Google Scholar 

  37. Blaha, K.; Smolikova, J.; Vitek, A. Coll. Czech. Chem. Commun. 1966, 31, 4296.

    Google Scholar 

  38. Deslauriers, R.; Grzonka, Z.; Schaumburg, K.; Shiba, T.; Walter, R. J. Am. Chem. Soc. 1975, 97, 5093.

    Google Scholar 

  39. Pachler, K.G.R. Spectrochim. Acta. 1964, 20, 581.

    Google Scholar 

  40. Siemion, I.Z. Org. Magn. Reson. 1976, 8, 432.

    Google Scholar 

  41. Nitecki, D.E.; Halpern, B.; Westley, J.W. J. Org. Chem. 1968, 33, 864.

    Google Scholar 

  42. Parker, R.G.; Roberts, J.D. J. Org. Chem. 1970, 35, 996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grant, G., Hunt, A., Milne, P. et al. The structure and conformation of the tryptophanyl diketopiperazines cyclo(Trp–Trp)·C2H6SO and cyclo(Trp–Pro). Journal of Chemical Crystallography 29, 435–447 (1999). https://doi.org/10.1023/A:1009567127868

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009567127868

Navigation