Skip to main content
Log in

Reactivity of amino acids and short peptide sequences: identifying bioactive compounds via DFT calculations

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Bioactive peptides are short amino acid sequences that play important roles in various physiological processes, including antioxidant and protective effects. These compounds can be obtained through protein hydrolysis and have a wide range of potential applications in a variety of areas. However, despite the potential of these compounds, more in-depth knowledge is still necessary to better understand details regarding their chemical reactivity and electronic properties. In this study, we used molecular modeling techniques to investigate the electronic structure of isolated amino acids (AA) and short peptide sequences. Details on the relative alignments between the frontier electronic levels, local chemical reactivity and donor–acceptor properties of the 20 primary amino acids and some di- and tripeptides were evaluated in the framework of the density functional theory (DFT). Our results suggest that the electronic properties of isolated amino acids can be used to interpret the reactivity of short sequences. We found that aromatic and charged amino acids, as well as Methionine, play a key role in determining the local reactivity of peptides, in agreement with experimental data. Our analyses also allowed us to identify the influence of the relative position of AA and terminations on the local reactivity of the sequences, which can guide experimental studies and help to propose/evaluate possible mechanisms of action. In summary, our data indicate that the position of active sites of polypeptides can be predicted from short sequences, providing a promising strategy for the synthesis and bioprospection of new optimized compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Muttenthaler M, King GF, Adams DJ, Alewood PF (2021) Trends in peptide drug discovery. Nat Rev Drug Discov 20:309–325. https://doi.org/10.1038/s41573-020-00135-8

    Article  CAS  PubMed  Google Scholar 

  2. Paul SM, Mytelka DS, Dunwiddie CT et al (2010) How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug Discov 9:203–214. https://doi.org/10.1038/nrd3078

    Article  CAS  PubMed  Google Scholar 

  3. Newman DJ, Cragg GM (2020) Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod 83:770–803. https://doi.org/10.1021/acs.jnatprod.9b01285

    Article  CAS  PubMed  Google Scholar 

  4. Craik DJ, Fairlie DP, Liras S, Price D (2013) The future of peptide-based drugs: peptides in drug development. Chem Biol Drug Des 81:136–147. https://doi.org/10.1111/cbdd.12055

    Article  CAS  PubMed  Google Scholar 

  5. Kang S-J, Park SJ, Mishig-Ochir T, Lee B-J (2014) Antimicrobial peptides: therapeutic potentials. Expert Rev Anti Infect Ther 12:1477–1486. https://doi.org/10.1586/14787210.2014.976613

    Article  CAS  PubMed  Google Scholar 

  6. Duffuler P, Bhullar KS, de Campos Zani SC, Wu J (2022) Bioactive peptides: from basic research to clinical trials and commercialization. J Agric Food Chem 70:3585–3595. https://doi.org/10.1021/acs.jafc.1c06289

    Article  CAS  PubMed  Google Scholar 

  7. Sousa NA, Oliveira GAL, de Oliveira AP et al (2020) Novel Ocellatin peptides mitigate LPS-induced ROS formation and NF-kB activation in microglia and hippocampal neurons. Sci Rep 10:2696. https://doi.org/10.1038/s41598-020-59665-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Barbosa EA, Oliveira A, Plácido A et al (2018) Structure and function of a novel antioxidant peptide from the skin of tropical frogs. Free Radic Biol Med 115:68–79. https://doi.org/10.1016/j.freeradbiomed.2017.11.001

    Article  CAS  PubMed  Google Scholar 

  9. Acquah C, Chan YW, Pan S et al (2019) Structure-informed separation of bioactive peptides. J Food Biochem 43:e12765. https://doi.org/10.1111/jfbc.12765

    Article  PubMed  Google Scholar 

  10. Ovando CA, de Carvalho JC, de Melo V, Pereira G et al (2018) Functional properties and health benefits of bioactive peptides derived from Spirulina: a review. Food Rev Int 34:34–51. https://doi.org/10.1080/87559129.2016.1210632

    Article  CAS  Google Scholar 

  11. Jiang Y, Chen Y, Song Z et al (2021) Recent advances in design of antimicrobial peptides and polypeptides toward clinical translation. Adv Drug Deliv Rev 170:261–280. https://doi.org/10.1016/j.addr.2020.12.016

    Article  CAS  PubMed  Google Scholar 

  12. Antony P, Vijayan R (2021) Bioactive peptides as potential nutraceuticals for diabetes therapy: a comprehensive review. Int J Mol Sci 22:9059. https://doi.org/10.3390/ijms22169059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pedron CN, Freire KA, Torres MDT et al (2020) Arg-substituted VmCT1 analogs reveals promising candidate for the development of new antichagasic agent. Parasitology 147:1810–1818. https://doi.org/10.1017/S0031182020001882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fontoura R, Daroit DJ, Corrêa APF et al (2019) Characterization of a novel antioxidant peptide from feather keratin hydrolysates. New Biotechnol 49:71–76. https://doi.org/10.1016/j.nbt.2018.09.003

    Article  CAS  Google Scholar 

  15. Dematei A, Nunes JB, Moreira DC et al (2021) Mechanistic insights into the leishmanicidal and bactericidal activities of batroxicidin, a cathelicidin-related peptide from a South American Viper ( Bothrops atrox ). J Nat Prod 84:1787–1798. https://doi.org/10.1021/acs.jnatprod.1c00153

    Article  CAS  PubMed  Google Scholar 

  16. do Nascimento Dias J, de Souza Silva C, de Araújo AR et al (2020) Mechanisms of action of antimicrobial peptides ToAP2 and NDBP-5.7 against Candida albicans planktonic and biofilm cells. Sci Rep 10327–10327. https://doi.org/10.1038/s41598-020-67041-2

  17. Plácido A, Bueno J, Barbosa EA et al (2020) The antioxidant peptide salamandrin-I: first bioactive peptide identified from skin secretion of Salamandra genus (Salamandra salamandra). Biomolecules 10:512. https://doi.org/10.3390/biom10040512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Barbosa EA, Plácido A, Moreira DC et al (2021) The peptide secreted at the water to land transition in a model amphibian has antioxidant effects. Proc R Soc B Biol Sci 288:20211531. https://doi.org/10.1098/rspb.2021.1531

    Article  CAS  Google Scholar 

  19. Plácido A, do Pais Amaral C, Teixeira C et al (2022) Neuroprotective effects on microglia and insights into the structure–activity relationship of an antioxidant peptide isolated from Pelophylax perezi. J Cell Mol Med 26:2793–2807. https://doi.org/10.1111/jcmm.17292

  20. Dematei A, Costa SR, Moreira DC et al (2022) Antioxidant and Neuroprotective effects of the first tryptophyllin found in snake venom (Bothrops moojeni). J Nat Prod acs.jnatprod.2c00304. https://doi.org/10.1021/acs.jnatprod.2c00304

  21. Barros ALAN, Silva VC, Ribeiro-Junior AF et al (2024) Antiviral action against SARS-CoV-2 of a synthetic peptide based on a novel defensin present in the transcriptome of the fire Salamander (Salamandra salamandra). Pharmaceutics 16:190. https://doi.org/10.3390/pharmaceutics16020190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee AC-L, Harris JL, Khanna KK, Hong J-H (2019) A comprehensive review on current advances in peptide drug development and design. Int J Mol Sci 20:2383. https://doi.org/10.3390/ijms20102383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vidal-Limon A, Aguilar-Toalá JE, Liceaga AM (2022) Integration of molecular docking analysis and molecular dynamics simulations for studying food proteins and bioactive peptides. J Agric Food Chem 70:934–943. https://doi.org/10.1021/acs.jafc.1c06110

    Article  CAS  PubMed  Google Scholar 

  24. Hoopes CR, Garcia FJ, Sarkar AM et al (2022) Donor-acceptor pyridinium salts for photo-induced electron-transfer-driven modification of tryptophan in peptides, proteins, and proteomes using visible light. J Am Chem Soc 144:6227–6236. https://doi.org/10.1021/jacs.1c10536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. He W, Jiang Y, Jin J, et al (2022) Accelerating bioactive peptide discovery via mutual information-based meta-learning. Brief Bioinform 23:bbab499. https://doi.org/10.1093/bib/bbab499

  26. Ongpipattanakul C, Desormeaux EK, DiCaprio A et al (2022) Mechanism of action of ribosomally synthesized and post-translationally modified peptides. Chem Rev 122:14722–14814. https://doi.org/10.1021/acs.chemrev.2c00210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Firouzi R, Noohi B (2022) Identification of key stabilizing interactions of amyloid- β oligomers based on fragment molecular orbital calculations on macrocyclic β -hairpin peptides. Proteins Struct Funct Bioinforma 90:229–238. https://doi.org/10.1002/prot.26212

    Article  CAS  Google Scholar 

  28. Syryamina VN, Siano AS, Formaggio F, De Zotti M (2022) A peptide-based trap for metal ions studied by electron paramagnetic resonance. Chemosensors 10:71. https://doi.org/10.3390/chemosensors10020071

    Article  CAS  Google Scholar 

  29. Yu J, Horsley JR, Abell AD (2018) Peptides as bio-inspired electronic materials: an electrochemical and first-principles perspective. Acc Chem Res 51:2237–2246. https://doi.org/10.1021/acs.accounts.8b00198

    Article  CAS  PubMed  Google Scholar 

  30. Bakels S, Gaigeot M-P, Rijs AM (2020) Gas-Phase infrared spectroscopy of neutral peptides: insights from the far-IR and THz domain. Chem Rev 120:3233–3260. https://doi.org/10.1021/acs.chemrev.9b00547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lewis DK, Oh Y, Mohanam LN et al (2022) Electronic structure of de novo peptide ACC-Hex from first principles. J Phys Chem B acs.jpcb.2c02346. https://doi.org/10.1021/acs.jpcb.2c02346

  32. Wang W, Cui Z, Ning M et al (2022) In-silico investigation of umami peptides with receptor T1R1/T1R3 for the discovering potential targets: a combined modeling approach. Biomaterials 281:121338. https://doi.org/10.1016/j.biomaterials.2021.121338

    Article  CAS  PubMed  Google Scholar 

  33. Flores-Holguín N, Frau J, Glossman-Mitnik D (2020) Conceptual DFT-based computational peptidology of marine natural compounds: discodermins A-H. Molecules 25:4158. https://doi.org/10.3390/molecules25184158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Flores-Holguín N, Frau J, Glossman-Mitnik D (2021) Computational pharmacokinetics report, ADMET study and conceptual DFT-based estimation of the chemical reactivity properties of marine cyclopeptides. ChemistryOpen 10:1142–1149. https://doi.org/10.1002/open.202100178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Flores-Holguín N, Frau J, Glossman-Mitnik D (2022) Computational peptidology approach to the study of the chemical reactivity and bioactivity properties of Aspergillipeptide D, a cyclopentapeptide of marine origin. Sci Rep 12:506. https://doi.org/10.1038/s41598-021-04513-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Flores-Holguín N, Frau J, Glossman-Mitnik D (2022) Virtual prospection of marine cyclopeptides as therapeutics by means of conceptual DFT and computational ADMET. Pharmaceuticals 15:509. https://doi.org/10.3390/ph15050509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kelly B, Pearce EL (2020) Amino assets: how amino acids support immunity. Cell Metab 32:154–175. https://doi.org/10.1016/j.cmet.2020.06.010

    Article  CAS  PubMed  Google Scholar 

  38. Hanwell MD, Curtis DE, Lonie DC, et al (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminformatics 4:. https://doi.org/10.1186/1758-2946-4-17

  39. Stewart JJP (2007) Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements. J Mol Model 13:1173–1213. https://doi.org/10.1007/s00894-007-0233-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Allouche A-R (2011) Gabedit-A graphical user interface for computational chemistry softwares. J Comput Chem 32:174–182. https://doi.org/10.1002/jcc.21600

    Article  CAS  PubMed  Google Scholar 

  41. Wang J, Wolf RM, Caldwell JW et al (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174. https://doi.org/10.1002/jcc.20035

    Article  CAS  PubMed  Google Scholar 

  42. Stewart JJP (1990) MOPAC: A semiempirical molecular orbital program. J Comput Aided Mol Des 4:1–103. https://doi.org/10.1007/BF00128336

    Article  PubMed  Google Scholar 

  43. Stewart JJP (2018) MOPAC2016. http://openmopac.net/MOPAC2016.html

  44. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648. https://doi.org/10.1063/1.464913

  45. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627. https://doi.org/10.1021/j100096a001

    Article  CAS  Google Scholar 

  46. Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58:1200–1211. https://doi.org/10.1139/p80-159

    Article  CAS  Google Scholar 

  47. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  48. Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09

  49. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3093. https://doi.org/10.1021/cr9904009

    Article  CAS  PubMed  Google Scholar 

  50. Gomes OP, Batagin-Neto A, Lisboa-Filho PN (2021) The evaluation of anchoring processes and chemical stability of zwitterionic molecules via local reactivity indexes. Comput Mater Sci 193:110418. https://doi.org/10.1016/j.commatsci.2021.110418

    Article  CAS  Google Scholar 

  51. Guevara-Level P, Pascal S, Siri O, Jacquemin D (2019) First principles investigation of the spectral properties of neutral, zwitterionic, and bis-cationic azaacenes. Phys Chem Chem Phys 21:22910–22918. https://doi.org/10.1039/C9CP04835A

    Article  CAS  PubMed  Google Scholar 

  52. Pedone A, Barone V (2010) Unraveling solvent effects on the electronic absorption spectra of TRITC fluorophore in solution: a theoretical TD-DFT/PCM study. Phys Chem Chem Phys 12:2722. https://doi.org/10.1039/b923419e

    Article  CAS  PubMed  Google Scholar 

  53. Wu A, Gao Y, Zheng L (2019) Zwitterionic amphiphiles: their aggregation behavior and applications. Green Chem 21:4290–4312. https://doi.org/10.1039/C9GC01808E

    Article  CAS  Google Scholar 

  54. Yang W, Mortier WJ (1986) The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines. J Am Chem Soc 108:5708–5711. https://doi.org/10.1021/ja00279a008

    Article  CAS  PubMed  Google Scholar 

  55. Maia RA, Ventorim G, Batagin-Neto A (2019) Reactivity of lignin subunits: the influence of dehydrogenation and formation of dimeric structures. J Mol Model 25:228. https://doi.org/10.1007/s00894-019-4130-4

    Article  CAS  PubMed  Google Scholar 

  56. De Proft F, Van Alsenoy C, Peeters A et al (2002) Atomic charges, dipole moments, and Fukui functions using the Hirshfeld partitioning of the electron density. J Comput Chem 23:1198–1209. https://doi.org/10.1002/jcc.10067

    Article  CAS  PubMed  Google Scholar 

  57. Roy RK, Pal S, Hirao K (1999) On non-negativity of Fukui function indices. J Chem Phys 110:8236–8245. https://doi.org/10.1063/1.478792

    Article  CAS  Google Scholar 

  58. Martinez C, Rivera JL, Herrera R et al (2008) Evaluation of the chemical reactivity in lignin precursors using the Fukui function. J Mol Model 14:77–81. https://doi.org/10.1007/s00894-007-0253-0

    Article  CAS  PubMed  Google Scholar 

  59. Fukui K (1982) Role of frontier orbitals in chemical reactions. Science 218:747–754. https://doi.org/10.1126/science.218.4574.747

    Article  CAS  PubMed  Google Scholar 

  60. Ehrenshaft M, Deterding LJ, Mason RP (2015) Tripping up Trp: modification of protein tryptophan residues by reactive oxygen species, modes of detection, and biological consequences. Free Radic Biol Med 89:220–228. https://doi.org/10.1016/j.freeradbiomed.2015.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fuentes-Lemus E, Dorta E, Escobar E et al (2016) Oxidation of free, peptide and protein tryptophan residues mediated by AAPH-derived free radicals: role of alkoxyl and peroxyl radicals. RSC Adv 6:57948–57955. https://doi.org/10.1039/C6RA12859A

    Article  CAS  Google Scholar 

  62. Netto LES, de Oliveira MA, Monteiro G et al (2007) Reactive cysteine in proteins: Protein folding, antioxidant defense, redox signaling and more. Comp Biochem Physiol Part C Toxicol Pharmacol 146:180–193. https://doi.org/10.1016/j.cbpc.2006.07.014

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Brazilian National Council for Scientific and Technological Development (CNPq) (Grants 448310/2014-7, 420449/2018-3 and 428211/2018-6) and Coordination for the Improvement of Higher Education (CAPES) (grant 88887.508044/2020-00) for the financial support. This research was also supported by resources supplied by the Center for Scientific Computing (NCC/Grid-UNESP) of the São Paulo State University (UNESP) and CENAPAD/SP.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: DO, FL, AB-N; Methodology: FL, AB-N; Formal analysis and investigation: DO, AC; Writing—original draft preparation: DO, AC; Writing—review and editing: FL, AB-N; Funding acquisition: AB-N; Resources: FL, AB-N; Supervision: FL, AB-N.

Corresponding author

Correspondence to Augusto Batagin-Neto.

Ethics declarations

Competing interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1890 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, D.F., Coleone, A.P., Lima, F.C.D.A. et al. Reactivity of amino acids and short peptide sequences: identifying bioactive compounds via DFT calculations. Mol Divers (2024). https://doi.org/10.1007/s11030-024-10868-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11030-024-10868-y

Keywords

Navigation