Skip to main content
Log in

Formation of TiO2 Sols, Gels and Nanopowders from Hydrolysis of Ti(OiPr)4 in AOT Reverse Micelles

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Titania sols, gels and nanopowders have been produced by the controlled hydrolysis of tetraisopropyltitanate (TPT) in sodium bis(2-ethylhexyl)sulfosuccinate (AOT) reverse micelles. Particle formation and aggregation have been investigated by photon correlation spectroscopy, the crystal phases by FT-Raman spectroscopy, and the crystallite dimensions of the precipitates by transmission electron microscopy. Nanoparticles could be produced at relatively high Ti(IV) concentrations (up to 0.05 mol dm−3). These nanoparticles aggregated into sols, with colloid sizes of 20–300 nm, eventually forming gelatinous precipitates. The kinetics of particle formation and aggregation were controlled by varying the primary process parameters [TPT], [H2O]/[AOT] (w0), and [H2O]/[Ti(IV)] (R), yielding a range of products including stable, transparent sols, precipitates and monolithic gels. The aggregation kinetics and physical properties of the sols depended strongly on w0. Different titania phases were produced, depending on w0; w0 ≤ 6 yielded amorphous particles, while w0 ≥ 10 produced anatase. The dimensions of the crystallites were comparable to those of the parent reverse micelles. A model was developed to interpret the effect of the primary process parameters on colloidal stability: (1) nucleation to form primary crystallites occurs by rapid hydrolysis and condensation reactions within the reverse micelle and (2) subsequent colloidal growth by aggregation occurs by reverse micellar exchange, where the rate of growth is governed by electrostatic and steric stability factors which increase as [AOT]/[TPT] (S) and residual [H2O]/[AOT] (wr) increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 1._R. Dagani, Chem. Eng. News, November, 18 (1992).

  2. C.J. Brinker and G.W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, San Diego, 1990).

    Google Scholar 

  3. P.D.I. Fletcher, A.M. Howe, and B.H. Robinson, J. Chem. Soc., Faraday Trans.1 83, 985 (1987).

    Google Scholar 

  4. C. Guizard, M. Stitou, A. Larbot, L. Cot, and J. Rouviere, in Better Ceramics Through Chemistry III, edited by C.J. Brinker, D.E. Clark, and D.R. Ulrich (Materials Research Society, 1988), p. 115.

  5. K. Osseo-Asare and F.J. Arriagada, in Better Ceramics Through Chemistry III, edited by C.J. Brinker, D.E. Clark, and D.R. Ulrich (Materials Research Society, 1988), p. 3.

  6. W. Wang, X. Fu, J. Tang, and L. Jiang, Colloids Surf. A 81, 177 (1993).

    Google Scholar 

  7. F.J. Arriagada and K. Osseo-Asare, Colloids Surf. A 69, 105 (1992).

    Google Scholar 

  8. K. Osseo-Asare and F.J. Arriagada, Colloids Surf. A 50, 321 (1990).

    Google Scholar 

  9. H. Yamauchi, T. Ishikawa, and S. Kondo, Colloids Surf. A 37, 71 (1989).

    Google Scholar 

  10. C. Guizard, A. Larbot, L. Cot, S. Perez, and J. Rouviere, J. Chim. Phys. Phys.-Chim. Biol. 87, 1901 (1990).

    Google Scholar 

  11. Y. Tricot, R. Rafaeloff, A. Emeren, and J.H. Fendler, ACS Symp. Series 278, 99 (1985).

    Google Scholar 

  12. F.J. Arriagada and K. Osseo-Asare, Refract. Met., Proc. Symp. Annu. Meet. Miner., Met. Mater. Soc. 1991, 259–269 (1991).

    Google Scholar 

  13. T. Hirai, E. Imamura, T. Matsumoto, R. Kuboi, and I. Komasawa, Kagaku Kogaku Ronbunshu 18, 296 (1992).

    Google Scholar 

  14. T. Hirai, H. Sato, and I. Komasawa, Ind. Eng. Chem. Res. 32, 3014 (1993).

    Google Scholar 

  15. J. Livage, M. Henry, and C. Sanchez, Prog. Solid St. Chem. 18, 259 (1989).

    Google Scholar 

  16. P.D. Moran, J.R. Bartlett, J.L. Woolfrey, G.A. Bowmaker, and R.P. Cooney, J. Sol-Gel Sci. Technol. 8, 65 (1997).

    Google Scholar 

  17. A. Maitra, J. Phys. Chem. 88, 5122 (1984).

    Google Scholar 

  18. T.F. Towey, A. Khan-Lodhi, and B.H. Robinson, J. Chem. Soc., Faraday Trans. 86, 3757 (1990).

    Google Scholar 

  19. S. Modes and P. Lianos, J. Phys. Chem. 93, 5854 (1989).

    Google Scholar 

  20. M.P. Pileni, L. Motte, and C. Petit, Chem. Mater. 4, 338 (1992).

    Google Scholar 

  21. L. Motte, C. Petit, L. Boulanger, P. Lixon, and M.P. Pileni, Langmuir 8, 1049 (1992).

    Google Scholar 

  22. C. Petit, P. Lixon, and M.P. Pileni, J. Phys. Chem. 94, 1598 (1990).

    Google Scholar 

  23. P. Lianos and J.K. Thomas, Chem. Phys. Lett. 125, 299 (1986).

    Google Scholar 

  24. P.D.I. Fletcher and B.H. Robinson, Ber. Bunsenges. Phys. Chem. 85, 863 (1981).

    Google Scholar 

  25. S.S. Atik and J.K. Thomas, J. Am. Chem. Soc. 103, 3543 (1981).

    Google Scholar 

  26. M. Smoluchowski, Z. Phys. Chem. 92, 129 (1918).

    Google Scholar 

  27. J. Lang, A. Jada, and A. Malliaris, J. Phys. Chem. 92, 1946 (1988).

    Google Scholar 

  28. R. Jóhannsson, M. Almgren, and J. Alsins, J. Phys. Chem. 95, 3819 (1991).

    Google Scholar 

  29. A.V. Barzykin and M. Tachiya, J. Phys. Chem. 98, 2677 (1994).

    Google Scholar 

  30. D.N.L. McGown, G.D. Parfitt, and E. Willis, J. Colloid Interface Sci. 20, 650 (1965).

    Google Scholar 

  31. C.A. Malbrel and P. Somasundaran, Langmuir 8, 1285 (1992).

    Google Scholar 

  32. K. Kandori, A. Kazama, K. Kon-no, and A. Kitahara, Bull. Chem. Soc. Jpn. 57, 1777 (1984).

    Google Scholar 

  33. S. Tohno and M. Itoh, J. Aerosol Sci. 24, 339 (1993).

    Google Scholar 

  34. J.P. Wilcoxon, R.L. Williamson, and R. Baughman, J. Chem. Phys. 98, 9933 (1993).

    Google Scholar 

  35. E.A. Lissi and D. Engel, Langmuir 8, 452 (1992).

    Google Scholar 

  36. P. Ménassa and C. Sandorfy, Can. J. Chem. 63, 3367 (1985).

    Google Scholar 

  37. P.D.I. Fletcher, M.F. Galal, and B.H. Robinson, J. Chem. Soc., Faraday Trans. I 80, 3307 (1984).

    Google Scholar 

  38. Unpublished results.

  39. G.D. Smith, C.E. Donelan, and R.E. Barden, J. Colloid Interface Sci. 60, 488 (1977).

    Google Scholar 

  40. B. Boddenberg and W. Horstmann, Ber. Bunsenges. Phys. Chem. 92, 519 (1988).

    Google Scholar 

  41. C.J. Brinker and G.W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, San Diego, 1990), p. 242.

    Google Scholar 

  42. S. Krishnakumar and P. Somasundaran, Langmuir 10, 2786 (1994).

    Google Scholar 

  43. P.D. Moran, G.A. Bowmaker, R.P. Cooney, J.R. Bartlett, and J.L. Woolfrey, Langmuir 11, 738 (1995), and references therein.

    Google Scholar 

  44. H. Yotsumoto and R.-H. Yoon, J. Colloid Interface Sci. 157, 426 (1993).

    Google Scholar 

  45. B.V. Velamakanni, J.C. Chang, F.F. Lange, and D.S. Pearson, Langmuir 6, 1323 (1990).

    Google Scholar 

  46. J.-L. Look and C.F. Zukoski, J. Am. Ceram. Soc. 78, 21 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moran, P.D., Bartlett, J.R., Bowmaker, G.A. et al. Formation of TiO2 Sols, Gels and Nanopowders from Hydrolysis of Ti(OiPr)4 in AOT Reverse Micelles. Journal of Sol-Gel Science and Technology 15, 251–262 (1999). https://doi.org/10.1023/A:1008741109896

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008741109896

Navigation