Skip to main content
Log in

Sol-Gel Synthesis and Characterisation of TiO2-Anatase Powders Containing Nanometric Platinum Particles Employed as Catalysts for 4-Nitrophenol Photodegradation

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A set of TiO2 and Pt-TiO2 polycrystalline samples were prepared by sol-gel method hydrolysing a modified alkoxide titanium precursors under acidic conditions. The Pt-TiO2 samples gave an homogeneous nanometric metal dispersion after drying heat treatment forming platinum particles in the range 2–4 nm. All the samples have been characterised using several techniques, namely thermogravimetric analysis, gas-chromatography, mass spectrometry, thermogravimetric analysis combined with mass spectrometry or with gas chromatography/mass spectrometry, X-ray diffraction coupled with a Rietveld refinement procedure, X-ray photoelectron spectroscopy and determination of specific surface area. Moreover, the samples have been employed as catalysts for 4-nitrophenol photodegradation in aqueous suspension used as a “probe” reaction. Characterisation results indicate that the thermal and chemical treatments of the catalysts influenced the photocatalytic activity. In the Pt-TiO2 samples both Pt(0) and Pt(II) species are present in the catalyst particles and the most abundant phase is anatase for all of the samples. Doping with Pt beneficially influences the photo-oxidant properties of TiO2 while the presence of organic residual species on the surface, deriving from the preparation procedure of the catalyst particles interferes negatively in the kinetics of the photocatalytic process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Idriss, V.S. Lusvardi, and M.A. Barteau, Surf. Sci. 348, 39 (1996).

    Google Scholar 

  2. H. Idriss, K.S. Kim, and M.A. Barteau, J. Catal. 139, 119 (1993).

    Google Scholar 

  3. H. Idriss, K.G. Pierce, and M.A. Barteau, J. Am. Chem. Soc. 116, 3063 (1994).

    Google Scholar 

  4. U. Diebold, J.M. Pan, and T.E. Madey, Surf. Sci. 331–333, 845 (1995).

    Google Scholar 

  5. L. Palmisano and A. Sclafani, in Heterogeneous Photocatalysis, Vol. 3, Series in Photoscience and Photoengineering, edited by M. Schiavello (Wiley, Chichester, 1997), p. 109 and references therein.

    Google Scholar 

  6. K. Tanaka, N.F. Capule, and T. Hisanaga, Chem. Phys. Lett. 187, 73 (1991).

    Google Scholar 

  7. A.P. Rivera, K. Tanaka, and T. Hisanaga, Appl. Catal. B: Environ. 3, 37 (1993).

    Google Scholar 

  8. A. Sclafani, L. Palmisano, and E. Davì, New J. Chem. 14, 265 (1990).

    Google Scholar 

  9. K. Karakitsou and X.E. Verykios, J. Phys. Chem. 97, 1184 (1993).

    Google Scholar 

  10. A. Sclafani, L. Palmisano, and M. Schiavello, J. Phys. Chem. 94, 829 (1990).

    Google Scholar 

  11. Y. Oosawa and M. Grätzel, J. Chem. Soc., Faraday Trans. 84, 197 (1988).

    Google Scholar 

  12. R. Campostrini, G. Carturan, L. Palmisano, M. Schiavello, and A. Sclafani, Mat. Chem. Phys. 38, 277 (1994).

    Google Scholar 

  13. A.M. Boonstra and C.A.H.A. Mutsaers, J. Phys. Chem. 79, 1694 (1975).

    Google Scholar 

  14. C.M. Wang, A. Heller, and H. Gerischer, J. Am. Chem. Soc. 114, 5230 (1992).

    Google Scholar 

  15. H. Gerischer and A. Heller, J. Phys. Chem. 95, 5261 (1991).

    Google Scholar 

  16. H. Gerisher and A. Heller, J. Electrochem. Soc. 139, 113 (1992).

    Google Scholar 

  17. M. Lindner, J. Theurich, and D.W. Bahnemann, Wat. Sci. Tech. 4, 79 (1997).

    Google Scholar 

  18. T. Kobayashi, A. Yoneyama, and H. Tamura, J. Electrochem. Soc. 103, 1706 (1983).

    Google Scholar 

  19. B. Kräutler and A.J. Bard, J. Am. Chem. Soc. 100, 5985 (1978).

    Google Scholar 

  20. I. Izumi, F.F. Fan, and A.J. Bard, J. Phys. Chem. 85, 218 (1981).

    Google Scholar 

  21. I. Izumi, W.W. Dunn, K.O. Wilbourn, F.F. Fan, and A.J. Bard, J. Phys. Chem. 84, 3207 (1980).

    Google Scholar 

  22. A. Sclafani and J.-M. Herrmann, J. Photochem. Photobiol. A: Chem. 113, 181 (1998).

    Google Scholar 

  23. A. Sclafani, L. Palmisano, G. Marcì, and A.M. Venezia, Solar Energy Mat. & Solar Cells 51, 203 (1998).

    Google Scholar 

  24. A. Wold, Chem. Mater. 5, 280 (1993).

    Google Scholar 

  25. A. Sclafani, M.N. Mozzanega, and P. Pichat, J. Photochem. Photobiol. A: Chem. 59, 181 (1991).

    Google Scholar 

  26. W. Mu, J.M. Herrmann, and P. Pichat, Catal. Lett. 3, 7 (1989).

    Google Scholar 

  27. G. Al-Sayyed, J.C. D'Oliveira, and P. Pichat, J. Photochem. Photobiol. A: Chem. 58, 99 (1991).

    Google Scholar 

  28. L.C. Klein (Ed.), Sol-Gel Optics: Processing and Applications (Kluwer Academic Publishers, Norwell, MA, 1994).

    Google Scholar 

  29. S. Sakka and K. Kamiya, J. Non Cryst. Solids 42, 403 (1980).

    Google Scholar 

  30. J.D. Mackenzie, J. Non Cryst. Solids 48, 1 (1982).

    Google Scholar 

  31. B.E. Yoldas, J. Sol-gel Sci. Technol. 1, 65 (1988).

    Google Scholar 

  32. T. López, I. Garcia-Cruz, and R. Gómez, J. Catal. 127, 75 (1991).

    Google Scholar 

  33. Bokhimi, A. Aceves, O. Novaro, T. López, and R. Gómez, J. Phys. Chem. 99, 14403 (1995).

    Google Scholar 

  34. V. Augugliaro, L. Palmisano, M. Schiavello, A. Sclafani, L. Marchese, G. Martra, and F. Miano, Appl. Catal. 69, 323 (1991).

    Google Scholar 

  35. R.J. Angelici, Inorg. Synth. 28, 349 (1990).

    Google Scholar 

  36. D.D. Perrin, W.L.F. Armarego, and D.R. Perrin, Purification of Laboratory Chemicals (Pergamon Press, New York, 1980).

    Google Scholar 

  37. (a) R. Campostrini, G. D'Andrea, G. Carturan, R. Ceccato, and G.D. Sorarù, J. Mat. Chem. 6, 585 (1996); (b) G. Marcì, L. Palmisano, A. Sclafani, A.M. Venezia, R. Campostrini, G. Carturan, C. Martin, V. Rives, and G. Solana, J. Chem. Soc., Faraday Trans. 92, 819 (1996).

    Google Scholar 

  38. L. Lutterotti, P. Scardi, and P. Maistrelli, J. Appl. Cryst. 25, 459 (1992).

    Google Scholar 

  39. Program Rietquam, available at http://www.ing.unitn.it/∼luttero.

  40. R.W.G. Wyckoff, Crystal Structures Vol 1 (Krieger Publishing Company, Florida, 1982).

    Google Scholar 

  41. ICSD, Inorganic Crystal Structure Database, FIZ Karlsruhe and Gmelin-Institute, Germany, 1990.

  42. A. Le Bail, J. Non-Cryst. Solids 183, 39 (1995).

    Google Scholar 

  43. L. Lutterotti, R. Ceccato, R. Dal Maschio, and E. Pagani, Mat. Sci. Forum 87, 278 (1998).

    Google Scholar 

  44. L. Reimer, Transmission Electron Microscopy (Springer Verlag, Berlin, 1989).

    Google Scholar 

  45. D.A. Shirley, Phys. Rev. 55, 4709 (1972).

    Google Scholar 

  46. J.F. Moulder, W.F. Stickle, P.E. Sobol, and K.D. Bomber, in Handbook of X-ray Photoelectron Spectroscopy, edited by J. Chastain (Perkin-Elmer Corporation, 1992).

  47. C. Sanchez, P. Toledano, and F. Ribot, Mat. Res. Soc. Symp. Proc. 180, 47 (1990).

    Google Scholar 

  48. B.E. Yoldas, J. Mater. Sci. 21, 1087 (1986).

    Google Scholar 

  49. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th ed. (John Wiley and Sons, New York, 1986), p. 231.

    Google Scholar 

  50. E. Sánchez, T. López, R. Gómez, Bokhimi, A. Morales, and O. Navarro, J. Solid State Chem. 122, 309 (1996).

    Google Scholar 

  51. E. Sánchez and T. López, Mat. Lett. 25, 271 (1995).

    Google Scholar 

  52. K.S. Kim and M.A. Barteau, J. Catal. 125, 353 (1990).

    Google Scholar 

  53. H. Madhavaram, P. Buchanan, and H. Idriss, J. Vac. Sci. Technol. A15, 1685 (1997).

    Google Scholar 

  54. B. Ohtani, Y. Ogawa, and S. Nishimoto, J. Phys. Chem. B101, 3752 (1997).

    Google Scholar 

  55. K. Kobayatawa, Y. Nakazawa, M. Ikada, Y. Sato, and A. Fujishima, Ber. Bunsenges. Phys. Chem. 94, 1439 (1990).

    Google Scholar 

  56. G. Munuera, V. Rives-Arnau, and A. Saucedo, J. Chem. Soc., Faraday Trans. 175, 736 (1979).

    Google Scholar 

  57. K. Tanabe, M. Misano, Y. Ono, and H. Hattori (Eds.), Studies in Surface Science and Catalysis Vol. 51 (Elsevier, New York, 1989).

    Google Scholar 

  58. A. Bielanski and J. Haber, Oxygen in Catalysis (Marcel Dekker Inc., New York, 1991).

    Google Scholar 

  59. E. Pelizzetti and N. Serpone (Eds.), Photocatalysis. Fundamentals and Applications (Wiley, New York, 1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Facchin, G., Carturan, G., Campostrini, R. et al. Sol-Gel Synthesis and Characterisation of TiO2-Anatase Powders Containing Nanometric Platinum Particles Employed as Catalysts for 4-Nitrophenol Photodegradation. Journal of Sol-Gel Science and Technology 18, 29–59 (2000). https://doi.org/10.1023/A:1008737612606

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008737612606

Navigation