Skip to main content

Advertisement

Log in

Chinese hamster ovary cells produce sufficient recombinant insulin-like growth factor I to support growth in serum-free medium. Serum-free growth of IGF-I-producing CHO cells

  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Insulin-like growth factor I has similar mitogenic effects to insulin, a growth factor required by most cells in culture, and it can replace insulin in serum-free formulations for some cells. Chinese Hamster Ovary cells grow well in serum-free medium with insulin and transferrin as the only exogenous growth factors. An alternative approach to addition of exogenous growth factors to serum-free medium is transfection of host cells with growth factor-encoding genes, permitting autocrine growth. Taking this approach, we constructed an IGF-I heterologous gene driven by the cytomegalovirus promoter, introduced it into Chinese Hamster Ovary cells and examined the growth characteristics of Insulin-like growth factor I-expressing clonal cells in the absence of the exogenous factor. The transfected cells secreted up to 500 ng/106 cells/day of mature Insulin-like growth factor I into the conditioned medium and as a result they grew autonomously in serum-free medium containing transferrin as the only added growth factor. This growth-stimulating effect, observed under both small and large scale culture conditions, was maximal since no further improvement was observed in the presence of exogenous insulin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ballard FJ, Francis GL, Ross M, Bagley CJ, May B and Wallace JC (1987) Natural and synthetic forms of insulin-like growth factor-1 (IGF-1) and the potent derivative, destripeptide IGF-1: biological activities and receptor binding. Biochem. Biophys. Res. Commun. 149: 398–404.

    Article  PubMed  CAS  Google Scholar 

  • Ballotti R, Nielsen FC, Pringle N, Kowalski A, Richardson WD, Van Obberghen E and Gammeltoft S (1987) Insulin-like growth factor I in cultured rat astrocytes: expression of the gene, and receptor tyrosine kinase. Embo. J. 6: 3633–3639.

    PubMed  CAS  Google Scholar 

  • Barnes D and Sato G (1980) Methods for growth of cultured cells in serum-free medium. Anal. Biochem. 102: 255–270.

    Article  PubMed  CAS  Google Scholar 

  • Baxter RC (1986) The somatomedins: insulin-like growth factors. Adv. Clin. Chem. 25: 49–115.

    PubMed  CAS  Google Scholar 

  • Bayne ML, Applebaum J, Chicchi GG, Hayes NS, Green BG and Cascieri MA (1988) Expression, purification and characterization of recombinant human insulin-like growth factor I in yeast. Gene 66: 235–244.

    Article  PubMed  CAS  Google Scholar 

  • Bayne ML, Cascieri MA, kelder B, Applebaum J, Chicchi GG, Shapiro JA, Pasleau F and Kopchick JJ (1987) Expression of a synthetic gene encoding human insulin-like growth factor 1 in cultured mouse fibroblasts. Proc. Natl. Acad. Sci. U.S.A. 84: 2638–2642.

    Article  PubMed  CAS  Google Scholar 

  • Bendig MM (1988) The production of foreign proteins in mammalian cells. Genet. Eng. 7: 91–127.

    PubMed  CAS  Google Scholar 

  • Blum WF, Jenne EW, Reppin F, Kietzmann K, Ranke MB and Bierich JR (1989) Insulin-like growth factor I (IGF-I)-binding protein complex is a better mitogen than free IGF-I. Endocrinology 125: 766–772.

    PubMed  CAS  Google Scholar 

  • Bovenberg WA, Dauwerse JG, Pospiech HM, Van Buul Offers SC, Van den Brande JI and Sussenbach JS (1990) Expression of recombinant human insulin-like growth factor I in mammalian cells. Mol. Cell. Endocrinol. 74: 45–59.

    Article  PubMed  CAS  Google Scholar 

  • Cascieri MA, Hayes NS, Kelder B, Kopchick JJ, Chicchi GG, Slater EE and Bayne ML (1988) Inability of a mouse cell line transformed to produce biologically active recombinant human insulin-like growth factor I (IGF-I) to respond to exogenously added IGF-I. Endocrinology 122: 1314–1320.

    PubMed  CAS  Google Scholar 

  • Chen C and Okayama H (1988) Calcium phosphate-mediated gene transfer: A highly effective system for stably transforming cells with plasmid DNA. Bio/Techniques 6: 632–638.

    CAS  Google Scholar 

  • Clemmons DR (1984) Multiple hormones stimulate the production of somatomedin by cultured human fibroblasts. J. Clin. Endocrinol. Metab. 58: 850–856.

    Article  PubMed  CAS  Google Scholar 

  • Clemmons DR and Shaw DS (1983) Variables controlling somatomedin production by cultured human fibroblasts. J. Cell. Physiol. 115: 137–142.

    Article  PubMed  CAS  Google Scholar 

  • Clemmons DR, Underwood LE and Van Wyk JJ (1981) Hormonal control of immunoreactive somatomedin production by cultured human fibroblasts. J. Clin. Invest. 67: 10–19.

    Article  PubMed  CAS  Google Scholar 

  • Dai Z, Stiles AD, Moats SB, Van Wyk JJ and D'Ercole AJ (1992a) Interaction of secreted insulin-like growth factor-I (IGF-I) with cell surface receptors is the dominant mechanism of IGF-I's autocrine actions. J. Biol. Chem. 267: 19565–19571.

    PubMed  CAS  Google Scholar 

  • Dai Z, Takahashi SI, Van Wyk JJ and D'Ercole AJ (1992b) Creation of an autocrine model of insulin-like growth factor-I action in transfected FRTL-5 cells. Endocrinology 130: 3175–3183.

    Article  PubMed  CAS  Google Scholar 

  • Daughaday WH and Rotwein P (1989) Insulin-like growth factors I and II. Peptide, messenger ribonucleic acid and gene structures, serum, and tissue concentrations. Endocr. Rev. 10: 68–91.

    PubMed  CAS  Google Scholar 

  • Friedman JS, Cofer CL, Anderson CL, Kushner JA, Gray PP, Chapman GE, Stuart MC, Lazarus L, Shine J and Kushner PJ (1989) High expression in mammalian cells without amplification. Bio/Technology 7: 359–362.

    Article  CAS  Google Scholar 

  • Friedman KD, Rosen NL, Newman PJ and Montgomery RR (1988) Enzymatic amplification of specific cDNA inserts from lambda gt11 libraries. Nucleic Acids Res. 16: 8718.

    PubMed  CAS  Google Scholar 

  • Froesch ER, Schmid C, Schwander J and Zapf J (1985) Actions of insulin-like growth factors. Ann. Rev. Physiol. 443–467.

  • Gough NM (1988) Rapid and quantitative preparation of cytoplasmic RNA from small numbers of cells. Anal. Biochem. 173: 93–95.

    Article  PubMed  CAS  Google Scholar 

  • Jansen M, van Schaik FMA, Ricker AT, Bullock B, Woods DE, Gabbay KH, Nussbaum AL, Sussenbach JS and Van den Brande JL (1983) Sequence of cDNA encoding human insulin-like growth factor I precursor. Nature 306: 609–611.

    Article  PubMed  CAS  Google Scholar 

  • Kelly JL, Sanchez A, Brown GS, Chesterman CN and Sleigh MJ (1993) Accumulation of PDGF B and cell-binding forms of PDGF A in the extracellular matrix. J. Cell. Biol. 121: 1153–1163.

    Article  PubMed  CAS  Google Scholar 

  • Kozak M (1986) Point Mutations Define a Sequence Flanking the AUG initiator Codon that Modulates Translation by Eukaryotic Ribosomes. Cell 44: 283–292.

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural protein during assembly of the head bacteriophage T4. Nature 227: 680–685.

    Article  PubMed  CAS  Google Scholar 

  • Laub O and Rutler WJ (1983) Expression of the human insulin gene and cDNA in a heterologous mammalian system. J. Biol. Chem. 258: 6043–6050.

    PubMed  CAS  Google Scholar 

  • Maniatis T, Fritsch EF and Sambrook J. (1982) Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory, New York.

    Google Scholar 

  • McKinnon P, Ross M, Wells JR, Ballard FJ and Francis GL (1991) Expression, purification and characterization of secreted recombinant human insulin-like growth factor-I (IGF-I) and the potent variant des(1–3) IGF-I in Chinese hamster ovary cells. J. Mol. Endocrinol. 6: 231–239.

    Article  PubMed  CAS  Google Scholar 

  • Moore HP, Walker MD, Lee F and Kelly RB (1983) Expressing a human proinsulin cDNA in a mouse ACTH-secreting cell. Intracellular storage, proteolytic processing, and secretion on stimulation. Cell 35: 531–538.

    Article  PubMed  CAS  Google Scholar 

  • Rechler MM and Nissley SP (1985) The nature and regulation of the receptors for insulin-like growth factors. Annu. Rev. Physiol. 47: 425–442.

    Article  PubMed  CAS  Google Scholar 

  • Ross S and Englesberg E (1993) The competence progression model in CHO-K1 cells: the relationship between protein kinase C and immediate early gene expression in the insulin mitogenic signal. Biochim. Biophys. Acta 1177: 307–317.

    Article  PubMed  CAS  Google Scholar 

  • Rotwein P, Pollock KM, Didier DK and Krivi GG (1986) Organization and sequence of the human insulin-like growth factor I gene. Alternative RNA processing produces two insulin-like growth factor I precursor peptides. J. Biol. Chem. 261: 4828–4832.

    PubMed  CAS  Google Scholar 

  • Vollenweider F, Irminger JC, Gross DJ, Villa KL and Halban PA (1992) Processing of proinsulin by transfected hepatoma (FAO) cells. J. Biol. Chem. 267: 14629–14636.

    PubMed  CAS  Google Scholar 

  • Vollenweider F, Irminger JC and Halban PA (1993) Substrate specificity of proinsulin conversion in the constitutive pathway of transfected FAO (hepatoma) cells. Diabetologia 36: 1322–1325.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hunt, S.M.N., Pak, S.C.O., Bridges, M.W. et al. Chinese hamster ovary cells produce sufficient recombinant insulin-like growth factor I to support growth in serum-free medium. Serum-free growth of IGF-I-producing CHO cells. Cytotechnology 24, 55–64 (1997). https://doi.org/10.1023/A:1007969502256

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007969502256

Navigation