Skip to main content

Mammalian Cells, Tissues and Organ Culture: Applications

Practical Approach to Mammalian Cell and Organ Culture

Abstract

In today’s world, mammalian cell cultures are used to understand various physiological and pathophysiological cell signaling events related to normal as well as various diseased cells such as cancer cells and others. Besides, mammalian cells such as Chinese hamster ovary (CHO) cells, baby hamster kidney (BHK) cells, human embryonic kidney (HEK) cells, African green monkey kidney (COS) cells, NSO cells, HT1080 cell, and PER-C6 cells (many others too) as well as their culture products (various recombinant proteins) have widespread use in biotechnology, pharmacology, and medicine. The major usefulness of cultured mammalian cells and their products described in this chapter include (i) use as a model system for physiological and pathophysiological studies; (ii) use in experimental drug/toxin research; (iii) use in vaccine production, particularly against pathogenic viruses; (iv) use for various recombinant protein production; (v) in cell therapy; and finally (vi) in gene therapy. The various mammalian cell culture recombinant DNA products described in this chapter are tissue plasminogen activator, urokinase, follicle-stimulating hormone, blood clotting factor VIII, and erythropoietin. All these recombinant proteins exhibit widespread significance in the medical field. In comparison, cell and gene therapy are new fields and their success against various human diseases is substantially in the initial stages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Almo SC, Love JD. Better and faster: improvements and optimization for mammalian recombinant protein production. Curr Opin Struct Biol. 2014;26:39–43.

    Article  CAS  Google Scholar 

  • Andersen DC, Reilly DE. Production technologies for monoclonal antibodies and their fragments. Curr Opin Biotechnol. 2004;15:456–62.

    Article  CAS  Google Scholar 

  • Andersson LO, Forsman N, Huang K, et al. Isolation and characterization of human factor VIII: molecular forms in commercial factor VIII concentrate, cryopricitate, and plasma. PNAS USA. 1986;83:2979–83.

    Article  CAS  Google Scholar 

  • Aricescu AR, Lu W, Jones EY. A time and cost-efficient system for high-level protein production in mammalian cells. Acta Crystallogr D Biol Crystallogr. 2006;62:1243–50.

    Article  Google Scholar 

  • Barlow GH. Urinary and kidney cell plasminogen activator (urokinase). Methods in Enzymol. 1976;45:239–44.

    Article  CAS  Google Scholar 

  • Bernik MB, Kwaan HC. Plasminogen activator activity in cultures from human tissues. An immunological and histochemical study. J Clin Invest. 1969;48:1740–53.

    Article  CAS  Google Scholar 

  • Browne SM, Al-Rubeai M. Selection methods for high-producing mammalian cell lines. Trends Biotechnol. 2007;25:425–32.

    Article  CAS  Google Scholar 

  • Campos-da-Paz M, Costa CS, Quilici LS, Simoes IDC, Kyaw CM, Maranhao AQ, et al. Production of recombinant human factor VIII in different cell lines and the effect of human XBP1 co-expression. Mol Biotechnol. 2008;39:155–8.

    Article  CAS  Google Scholar 

  • Colosimo A, Goncz KK, Holmes AR, Kunzelmann K, Novelli G, Malone RW, et al. Transfer and expression of foreign genes in mammalian cells. Bio Techniques. 2000;20:314–31.

    Google Scholar 

  • Dalton AC, Barton WA. Over-expression of secreted proteins from mammalian cell lines. Protein Sci. 2014;23:517–25.

    Article  CAS  Google Scholar 

  • Davis JM, Arakawa T. Characterization of recombinant human erythropoietin produced in Chinese hamster ovary cells. Biochemistry. 1987;26:2633–8.

    Article  CAS  Google Scholar 

  • Egrie J. The cloning and production of recombinant human erythropoietin. Pharmacotherapy. 1990;10:3S–8S.

    CAS  Google Scholar 

  • Ekwall B. Screening of toxic compounds in tissue culture. Toxicology. 1980;17:127–42.

    Article  CAS  Google Scholar 

  • Ekwall B. Screening of toxic compounds in mammalian cell cultures. Ann N Y Acad Sci. 1983;407:64–77.

    Article  CAS  Google Scholar 

  • Fantacini DMC, Picanço-Castro V. Production of recombinant factor VIII in human cell lines. Methods Mol Biol. 2018;1674:63–74.

    Article  CAS  Google Scholar 

  • Fischbach MA, Bluestone JA, Lim WA. Cell-based therapeutics: the next pillar of medicine. Sci Transl Med. 2013;5:179ps7.

    Article  Google Scholar 

  • Geisse S, Henke M. Large-scale transient transfection of mammalian cells: a newly emerging attractive option for recombinant protein production. J Struct Funct Genom. 2005;6:165–70.

    Article  CAS  Google Scholar 

  • Gitschier J, Wood WI, Goralka TM, Wion KL, Chen EY, Eaton DH, et al. Characterization of the human factor VIII gene. Nature. 1984;312:326–30.

    Article  CAS  Google Scholar 

  • Gray D. Overview of protein expression by mammalian cells. Curr Protoc Protein Sci. 1997;10:5.9.1–5.9.18.

    Article  Google Scholar 

  • Griffiths JB, Electricwala A. Production of tissue plasminogen activators from animal cells. Vertebrate Cell Culture. 2005;I:147–66.

    Google Scholar 

  • Hakola K, Van der Boogaart P, Mulders J, de Leeuw R, Schoonen W, Heyst JV, et al. Recombinant rat follicle-stimulating hormone; production by Chinese hamster ovary cells, purification and functional characterization. Mol Cell Endocrinol. 1997;127:59–69.

    Article  CAS  Google Scholar 

  • Howles CM. Genetic engineering of human FSH (gonal-F). Hum Reprod Update. 1996;2:172–91.

    Article  CAS  Google Scholar 

  • Huang TK, McDonald KA. Bioreactor engineering for recombinant protein production in plant cell suspension cultures. Biochem Eng J. 2009;45:168–84.

    Article  CAS  Google Scholar 

  • Hunter M, Yuan P, Vavilala D, Fox M. Optimization of protein expression in mammalian cells. Current Prot in Protein Sci. 2019;95:e77.

    Article  Google Scholar 

  • Jones AJ, Garnick RL. Quality control of rDNA-derived human tissue-type plasminogen activator. Bioprocess Technol. 1990;10:543–66.

    CAS  Google Scholar 

  • Khan KH. Gene expression in mammalian cells and its applications. Adv Pharm Bull. 2013;3:257–63.

    Google Scholar 

  • Kost TA, Condreay JP. Recombinant baculoviruses as mammalian cell gene-delivery vectors. Trends Biotechnol. 2002;20:173–80.

    Article  CAS  Google Scholar 

  • Lai T, Yang Y, Ng SK. Advances in mammalian cell line development technologies for recombinant protein production. Pharmaceuticals (Basel). 2013;6:579–603.

    Article  CAS  Google Scholar 

  • Li F, Vijayasankaran N, Shen A, Kiss R, Amanullah A. Cell culture processes for monoclonal antibody production. MAbs. 2010;2:466–77.

    Article  Google Scholar 

  • Liu C, Dalby B, Chen W, Kilzer JM, Chiou HC. Transient transfection factors for high-level recombinant protein production in suspension cultured mammalian cells. Mol Biotechnol. 2008;39:141–53.

    Article  CAS  Google Scholar 

  • Masters JRW. Human cancer cell lines: fact and fantasy. Nat Rev Mol Cell Biol. 2000;1:233–6.

    Article  CAS  Google Scholar 

  • Mills M, Estes MK. Physiologically relevant human tissue models for infectious diseases. Drug Discov Today. 2016;21:1540–52.

    Article  CAS  Google Scholar 

  • Mirabelli P, Coppola L, Salvatore M. Cancer cell lines are useful model systems for medical research. Cancers (Basel). 2019;11:1098.

    Article  CAS  Google Scholar 

  • Montagnon BJ, Fanget B, Nicolas AJ. The large-scale cultivation of Vero cells in microcarrier-culture for virus-vaccine production: preliminary results for killed poliovirus-vaccine. Dev Biol Stand. 1981;47:55–64.

    CAS  Google Scholar 

  • Omasa T. Gene amplification and its application in cell and tissue engineering. J Biosci Bioeng. 2002;94:600–5.

    Article  CAS  Google Scholar 

  • Paganuzzi-Stammati A, Silano V, Zucco F. Toxicology investigations with cell culture systems. Toxicology. 1981;20:91–153.

    Article  Google Scholar 

  • Plotkin SA, Eagle H, Hayflick L, Ikic D, Koprowski H, Perkins F. Serially cultured animal cells for preparation of viral vaccines. Science. 1969;165:1278–82.

    Article  CAS  Google Scholar 

  • Rijken DC, Collen D. Purification and characterization of the plasminogen activator secreted by human melanoma cells in culture. J Biol Chem. 1981;256:7035–41.

    Article  CAS  Google Scholar 

  • Sambrook, Fritsch, Maniatis. Molecular cloning: a laboratory manual. 2nd ed. New York: Cold Spring Harbor Laboratory Press, Cold Spring Harbor; 1989;3:Apendix B.12

    Google Scholar 

  • Schimke RT. Gene amplification in cultured animal cells. Cell. 1984;37:705–13.

    Article  CAS  Google Scholar 

  • Sissolak B, Kandra K, Stosch MV, Mayer M, Striedner G. Quality by control: towards model predictive control of mammalian cell culture bioprocesses. Biotechnol. 2017;12. Special Issue: Biochemical Engineering Science

    Google Scholar 

  • Takeuchi M, Inoue N, Strickland TW, Kubota M, Wada M, Shimizu R, et al. Relationship between sugar chain structure and biological activity of recombinant human erythropoietin produced in Chinese hamster ovary cells. Proc Nati Acad Sci USA. 1989;86:7819–22.

    Article  CAS  Google Scholar 

  • Trill JJ, Shatzman AR, Ganguly S. Production of monoclonal antibodies in COS and CHO cells. Curr Opin Biotechnol. 1995;6:553–60.

    Article  CAS  Google Scholar 

  • Walter JK, Werz W, Berthold W. Virus removal and inactivation. Concept and data for process validation of downstream processing. Biotech Forum Europe. 1992;9:560–4.

    CAS  Google Scholar 

  • Werz W, Hoffmann H, Haberer K, Walter JK. Strategies to avoid virus transmissions by biopharmaceutic products. Arch Virol Suppl. 1997;13:245–56.

    CAS  Google Scholar 

  • White WF, Barlow GH, Mozen MM. The isolation and characterization of plasminogen activators (urokinase) from human urine. Biochemist. 1966;5:2160–9.

    Article  CAS  Google Scholar 

  • Wu SC, Huang GYL, Liu JH. Production of retrovirus and adenovirus vectors for gene therapy: a comparative study using microcarrier and stationary cell culture. Biotechnol Prog. 2002;18:617–22.

    Article  CAS  Google Scholar 

  • Wurm FM. Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol. 2004;22:1393–8.

    Article  CAS  Google Scholar 

  • Yarranton GT. Mammalian recombinant proteins: vectors and expression systems. Curr Opin Biotechnol. 1990;1:133–40.

    Article  CAS  Google Scholar 

  • Zeyda M, Borth N, Kunert R, Katinger H. Optimization of sorting conditions for the selection of stable, high-producing mammalian cell lines. Biotechnol Prog. 1999;15:953–7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mukherjee, S., Malik, P., Mukherjee, T.K. (2023). Mammalian Cells, Tissues and Organ Culture: Applications. In: Mukherjee, T.K., Malik, P., Mukhopadhyay, S. (eds) Practical Approach to Mammalian Cell and Organ Culture. Springer, Singapore. https://doi.org/10.1007/978-981-19-1731-8_17-1

Download citation

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Mammalian Cells, Tissues and Organ Culture: Applications
    Published:
    20 January 2023

    DOI: https://doi.org/10.1007/978-981-19-1731-8_17-2

  2. Original

    Mammalian Cells, Tissues and Organ Culture: Applications
    Published:
    10 December 2022

    DOI: https://doi.org/10.1007/978-981-19-1731-8_17-1