Skip to main content
Log in

Composition and functional properties of protein isolates obtained from commercial legumes grown in northern Spain

  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Pea (Pisum sativum), faba bean (Vicia faba) and soybean (Glycine max) seeds were characterized, and protein isolates were prepared following an isoelectric point precipitation procedure. Soybean seeds showed the highest protein content (36.7%) and carbohydrate was the major constituent in the pea (59.4%) and the faba bean seeds (52.1%). Protein contents were higher than 80% in all the protein isolates. The amino acid contents in the protein isolates were, in general, higher than those in their own starting seeds. The antinutritional factor contents were reduced after the protein isolate preparation. The highest reductions achieved for tannins were 95% in the faba bean protein isolate, and for phytates (45%) and trypsin inhibitor activity (46%) in the pea protein isolate. Haemagglutinating activity was not detected in any of the protein isolates. Minimum solubility values were observed at a pH range between 4.0 and 6.0, and maximal solubilities were obtained at basic pH values. The faba bean protein isolate showed the highest water and oil absorption capacities, and the best gelling properties. The soybean protein isolate had the best foam expansion capacity. Thus, the protein isolates had an improvement in some of the characteristics compared to their original seeds with lower contents in tannins, phytates and haemagglutinating activity, but had weak functional properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liener I (1994). Implications of antinutritional components in soybean foods. Crit Rev Food Sci Nutr 34: 31-67.

    Article  CAS  Google Scholar 

  2. Melcion JP, Poel A van der (1993). Process technology and antinutritional factors: principle adequacy and process optimization. In: A van der Poel, J Huisman, H Saini (eds), Recent advances of research in antinutritional factors in legume seeds, pp 419-434. Wageningen, The Netherlands: Wageningen Pers.

    Google Scholar 

  3. Frias J, Díaz-Pollan C, Hedley CL, Vidal-Valverde C (1995). Evolution of trypsin inhibitor activity during germination of lentils. J Agric Food Chem 43: 2231-2234.

    Article  CAS  Google Scholar 

  4. Kothekar VS, Harsulkar AM, Khandelwal AR (1996). Low trypsin and chymotrypsin inhibitor mutants in winged bean (Psophocorpus tetragonolobus(L.) DC). J Sci Food Agric 71: 137-140.

    Article  CAS  Google Scholar 

  5. Kozlowska H, Honke J, Sadowska J, Frias J, Vidal-Valverde C (1996). Natural fermentation of lentils: influence of time, concentration and temperature on the kinetics of hydrolisis of inositol phosphates. J Sci Food Agric 71: 367-375.

    Article  CAS  Google Scholar 

  6. Swamylingappa B, Srinivas H (1994). Preparation and properties of protein isolate from hexaneacetic acid treated comercial soybean meal. J Agric Food Chem 42: 2907-2911.

    Article  CAS  Google Scholar 

  7. Lecomte N, Zayas J, Kastner C (1993). Soy proteins functional and sensory characteristics improved in comminuted meals. J Food Sci 58: 464-466, 472.

    Article  Google Scholar 

  8. Soetrisno U, Holmes Z (1992). Functional properties of acid and salt extracted proteins of yellow peas (Pisum sativumL. Miranda). J Agric Food Chem 40: 975-980.

    Article  CAS  Google Scholar 

  9. Thompson LU (1977). Preparation and evaluation of mung bean protein isolates. J Food Sci 42: 202-206.

    Article  CAS  Google Scholar 

  10. McCurdy S, Knipfel J (1990). Investigation of faba bean protein recovery and application to pilot scale processing. J Food Sci 55: 1093-1094, 1101.

    Article  CAS  Google Scholar 

  11. Fernández-Quintela A, Macarulla MT, Martínez JA (1993). Obtención y caracterización de concentrados de proteína a partir de leguminosas. Rev Esp Cienc Tecnol Alim 33: 185-197.

    Google Scholar 

  12. AOAC (1990). Official Methods of Analysis, 15th edn. Washington, DC: Association of Official Analytical Chemists.

  13. Burbach J, Prins A, Lebouille L, Verhoef J, Witter A (1982). Sensitive and rapid amino acid analysis of peptide hydrolysates by high-performance liquid chromatography of o-phtahaldialdehyde derivatives. J Chromatogr 237: 339-343.

    Article  CAS  Google Scholar 

  14. Del Barrio AS, GarcíaCalonge MA, Fernández-Quintela A, Simón E, Portillo MP, Astiasarán I, Martínez JA (1995). Effects of the beta-adrenergic agonist salbutamol and its withdrawal on protein metabolism in lambs. Ann Nutr Metab 39: 317-324.

    Article  CAS  Google Scholar 

  15. Kakade M, Rackis J, McGhee J, Puski G (1974). Determination of trypsin inhibitor activity of soy products: a collaborative analysis of an improved procedure. Cereal Chem 51: 376-382.

    CAS  Google Scholar 

  16. Deshpande S, Singh R (1991). Hemagglutinating activity of lectins in selected varieties of raw and processed dry beans. J Food Process Preserv 15: 81-87.

    Article  CAS  Google Scholar 

  17. Thompson D, Erdman J Jr (1982). Phytic acid determination in soybeans. J Food Sci 47: 513-517.

    Article  CAS  Google Scholar 

  18. Bartlett GR (1959). Phosphorus assay in column chromatography. J Biol Chem 234: 466-471.

    CAS  Google Scholar 

  19. Burns R (1971). Method for estimation of tannin in grain shorgum. Agronomy J 63: 511-512.

    Article  CAS  Google Scholar 

  20. Balmaceda E, Kim M, Franzen R, Mardones B, Lugay J (1984). Protein functionality methodology. In: J Regenstein, C Regenstein (eds), Food protein chemistry, an introduction for food scientist. New York: Academic Press.

    Google Scholar 

  21. Paredes-López O, Ordorica-Falomir C, Olivares-Vázquez MR (1991). Chickpea protein isolates: physicochemical, functional and nutritional characterization. J Food Sci 56: 726-729.

    Article  Google Scholar 

  22. Sathe SK, Salunkhe SS (1981). Functional properties of the Great Northern bean (Phaseolus vulgarisL.) proteins: emulsion, foaming, viscosity and gelation properties. J Food Sci 46: 71-74, 81.

    Article  Google Scholar 

  23. FAO/WHO/UNU (1985). Energy and protein requirements. Report of a joint meeting. WHO, Geneva, Technical Report Series No. 724.

    Google Scholar 

  24. Coelho R, Sgarbieri V (1995). Nutritional evaluation of bean (Phaseolus vulgaris) protein. In vivoversus in vitroprocedure. J Food Biochem 18: 297-309.

    Article  CAS  Google Scholar 

  25. Petruccelli S, Añón M (1995). Soy protein isolate components and their interactions. J Agric Food Chem 43: 1762-1767.

    Article  CAS  Google Scholar 

  26. Flink J, Christiansen I (1973). The production of a protein isolate from Vicia faba. Lebensm-Wiss u Technol 6: 102-106.

    CAS  Google Scholar 

  27. Dagorn-Scaviner C, Gueguen J, Lefebvre J (1987). Emulsifying properties of pea globulins as related to their adsorption behaviors. J Food Sci 52: 335-341.

    Article  CAS  Google Scholar 

  28. Friedman M (1996). Nutritional value of proteins from different food sources: A review. J Agric Food Chem 44: 6-29.

    Article  CAS  Google Scholar 

  29. Wang CR, Zayas JF (1992). Emulsifying capacity and emulsion stability of soy proteins compared with corn germ protein flour. J Food Sci 57: 726-731.

    Article  CAS  Google Scholar 

  30. Anderson R, Wolf W (1995). Compositional changes in trypsin inhibitors, phytic acid, saponins and isoflavones related to soybean processing. J Nutr 125: 581S-588S.

    CAS  Google Scholar 

  31. Visser A, Tolman G (1993). The influence of various processing conditions on the level of antinutritional factors in soy bean products and their nutritional value for young calves. In: A van der Poel, J Huisman, H Saini (eds), Recent advances of research in antinutritional factors in legume seeds, pp 447-454. Wageningen, The Netherlands: Wageningen Pers.

    Google Scholar 

  32. Hurrell R, Juillerat M-A, Reddy M, Lynch S, Dassenko S, Cook J (1992). Soy protein, phytate, and iron absorption in humans. Am J Clin Nutr 56: 573-578.

    CAS  Google Scholar 

  33. Savelkoul FHMG, Van der Poel AFB, Tamminga S (1992). The presence and inactivation of trypsin inhibitors, tannins, lectins and amylase inhibitors in legume seeds during germination: A review. Plant Foods Hum Nutr 42: 71-85.

    Article  CAS  Google Scholar 

  34. Coffey D, Uebersax M, Hosfield G, Bennink M (1992). Stability of red kidney bean lectin. J Food Biochem 16: 43-57.

    Article  CAS  Google Scholar 

  35. Helsper JPFG, Hoogendijk JM, Van Norel A, Burger-Meyer K (1993). Antinutritional factors in faba beans (Vicia fabaL.) as affected by breeding towards the absence of condensed tannins. J Agric Food Chem 41: 1058-1061.

    Article  CAS  Google Scholar 

  36. Longstaff M, Feuerstein D, McNab J, McCorquodale C (1993). The influence of proanthocyanidin-rich hulls and level of dietary protein on energy metabolizability and nutrient digestibility by adult cockerels. Br J Nutr 70: 355-367.

    Article  CAS  Google Scholar 

  37. Sathe SK, Deshpande SS, Salunkhe DK (1982a). Functional properties of winged bean [Psophocarpus tetragonolobus(L.) DC] protein. J Food Sci 47: 503-509.

    Article  CAS  Google Scholar 

  38. Frübeck G, Alonso R, Marzo F, Santidrián S (1995). A modified method for the indirect quantitative analysis of phytate in foodstuffs. Anal Biochem 225: 206-212.

    Article  Google Scholar 

  39. Zumwalt RW, Absheer JS, Kaiser FE, Gehrke CW (1987). Acid hydrolysis for chromatographic analysis of amino acids. J Assoc Off Anal Chem 70: 147-151.

    CAS  Google Scholar 

  40. Deshpande SS, Nielsen SS (1987). Nitrogenous constituents of selected grain legumes. J Food Sci 52: 1321-1325.

    Article  CAS  Google Scholar 

  41. Combe E, Achi T, Pion R (1991). Utilisations digestive et métabolique comparées de la fève, de la lentille et du pois chiche chez le rat. Reprod Nutr Dev 31: 631-646.

    Article  CAS  Google Scholar 

  42. Zarkadas CG, Karatzas CN, Khanizadeh S (1993). Evaluating protein quality of model meat/soybean blends using amino acid compositional data. J Agric Food Chem 42: 624-632.

    Article  Google Scholar 

  43. Sarwar G, Peace RW (1994). The protein quality of some enteral products is inferior to that of casein as assessed by rat growth methods and digestibility-corrected amino acid scores. J Nutr 124: 2223-2232.

    CAS  Google Scholar 

  44. Sathe SK, Deshpande SS, Salunkhe DK (1982b). Functional properties of lupin seed (Lupinus mutabilis) proteins and protein concentrates. J Food Sci 47: 491-497, 502.

    Article  CAS  Google Scholar 

  45. Idouraine A, Yensen SB, Weber CW (1991). Tepary bean flour, albumin and globulin fractions functional properties compared with soy protein isolate. J Food Sci 56: 1316- 1318, 1326.

    Article  CAS  Google Scholar 

  46. López de Ogara MC, Delgado de Layño M, Pilosof AM, Macchi RA (1992). Functional properties of soy protein isolates as affected by heat treatment during isoelectric precipitation. J Am Oil Chem Soc 69: 184-187.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández-Quintela, A., Macarulla, M.T., del Barrio, A.S. et al. Composition and functional properties of protein isolates obtained from commercial legumes grown in northern Spain. Plant Foods Hum Nutr 51, 331–341 (1997). https://doi.org/10.1023/A:1007936930354

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007936930354

Navigation