Skip to main content
Log in

Comparative physico-chemical, functional and structural characteristics of winged bean [Psophocarpus tetragonolobus DC] and Soybean [Glycine max.] Protein isolates

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The physicochemical (colour, bulk density, thermal properties, molecular sizes), functional (water and oil absorption, solubility, emulsifying and gelation properties) and secondary structural properties of winged bean isolate (W-ISO) were studied and compared with those of soybean isolate(S-ISO) as reference. Results showed that W-ISO and S-ISO had extraction rates of 32.23 and 37.52 g/100 g, respectively, with corresponding protein content of 81.68 and 85.69% (dry weight basis). W-ISO and S-ISO had denaturation temperature and enthalpy of 105.53 & 111.61 °C, and 3.77 & 3.30 J g-1, respectively. Both isolates showed comparable functional properties, but W-ISO had higher foaming and oil absorption properties whereas S-ISO had higher water absorption and surface hydrophobicity. FTIR spectroscopy showed that W-ISO is composed of 15.38% α-helices, 37.46% β-sheets, 31.67% turns and 15.38% disordered secondary structures whereas S-ISO had 15.46% α-helices, 46.15% β-sheets, 30.78% turns and 7.69% unordered components. In addition to being a potential food ingredient comparable to soybean isolate, winged bean isolate can also be employed in foods where high foam volume is essential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. D. Johnson, Functional properties of oilseed proteins. J Am Oil Chem Soc 47(10), 402–407 (1970)

    Article  CAS  Google Scholar 

  2. A. Heywood, D. Myers, T. Bailey, L. Johnson, Functional properties of low-fat soy flour produced by an extrusion-expelling system. J. Amer. Oil. Chem. Soc. 79(12), 1249–1253 (2002)

    Article  CAS  Google Scholar 

  3. K. Liu, Agronomic Characteristics, Production, and Marketing, in Soybeans: chemistry, production, processing, and utilization, ed. by WP Johnson LA, R Galloway (Springer, Dordrecht, 1997), pp. 1–24

    Chapter  Google Scholar 

  4. R. Horax, N. Hettiarachchy, A. Kannan, P. Chen, Protein extraction optimisation, characterisation, and functionalities of protein isolate from bitter melon (Momordica charantia) seed. Food chemistry 124(2), 545–550 (2011)

    Article  CAS  Google Scholar 

  5. S. Mundi, R.E. Aluko, Physicochemical and functional properties of kidney bean albumin and globulin protein fractions. Food Res. Int. 48(1), 299–306 (2012)

    Article  CAS  Google Scholar 

  6. K. Shevkani, A. Kaur, S. Kumar, N. Singh, Cowpea protein isolates: Functional properties and application in gluten-free rice muffins. LWT - Food Science and Technology 63(2), 927–933 (2015)

    Article  CAS  Google Scholar 

  7. Wani IA, Sogi DS, Gill BS (2015) Physico-chemical and functional properties of native and hydrolysed protein isolates from Indian black gram (Phaseolus mungo L.) cultivars. LWT-Food Science and Technology 60 (2):848–854

  8. C.-H. Tang, X.-Y. Wang, Physicochemical and structural characterisation of globulin and albumin from common buckwheat (Fagopyrum esculentum Moench) seeds. Food. Chem. 121(1), 119–126 (2010)

    Article  CAS  Google Scholar 

  9. A.A. Wani, D.S. Sogi, P. Singh, I.A. Wani, U.S. Shivhare, Characterisation and functional properties of watermelon (Citrullus lanatus) seed proteins. J. Sci. Food Agric. 91(1), 113–121 (2011). doi:10.1002/jsfa.4160

    Article  CAS  Google Scholar 

  10. S.A. Malomo, R. He, R.E. Aluko, Structural and Functional Properties of Hemp Seed Protein Products. Journal of food science 79(8), C1512–C1521 (2014)

    Article  CAS  Google Scholar 

  11. T.S. Withana-Gamage, JPD Wanasundara, Z. Pietrasik, P.J. Shand, Physicochemical, thermal and functional characterisation of protein isolates from Kabuli and Desi chickpea (Cicer arietinum L.): a comparative study with soy (Glycine max) and pea (Pisum sativum L.). J. Sci. Food Agric. 91(6), 1022–1031 (2011)

    Article  CAS  Google Scholar 

  12. SchwarzenbolzU Adebowale,, T. Henle, Protein isolates from Bambara groundnut (Voandzeia Subterranean L.): Chemical characterization and functional properties. Int. J. Food Prop. 14(4), 758–775 (2011)

    Article  CAS  Google Scholar 

  13. L.A. Arogundade, C.O. Eromosele, I.C. Eromosele, O. Ademuyiwa, Effects of isolation conditions on the functional properties of African yam bean (Sphenostylis stenocarpa Hochst. Ex A. Rich.) proteins. J. Food Process. Preserv. 37(5), 555–567 (2013)

    CAS  Google Scholar 

  14. D. Ningombam R, P. Singh, K., J. Salam, S, Proximate Composition and Nutritional Evaluation of Underutilized legume Psophocarpus tetragonolobus (L.) DC. Grown in Manipur, Northeast India. Am J Food Tech 7, 487–493 (2012)

    Article  Google Scholar 

  15. K. Mtebe, M.H. Gordon, Volatiles derived from lipoxygenase-catalysed reactions in winged beans (< i> Psophocarpus tetragonolobus). Food chemistry 23(3), 175–182 (1987)

    Article  CAS  Google Scholar 

  16. S.K. Sathe, D.K. Salunkhe, Investigations on Winged Bean [Psophocarpus tetragonolobus (L.) DC] Proteins and Antinutritional Factors. J. Food Sci. 46(5), 1389–1393 (1981)

    Article  CAS  Google Scholar 

  17. S. Ochiai Yanagi, Properties of Winged Bean (Psophocarpus tetragonolobus) Protein in Comparison with Soybean (Glycine max) and Common Bean (Phaseolus vulgaris) Protein. Agric. Biol. Chem. 47(10), 2273–2280 (1983)

    Article  Google Scholar 

  18. A. Achouri, V. Nail, J.I. Boye, Sesame protein isolate: Fractionation, secondary structure and functional properties. Food research international 46(1), 360–369 (2012)

    Article  CAS  Google Scholar 

  19. S. Yanagi, Studies on divergence of 11 S globulin (glycinine) among soybean varieties. (Report of National Food Research Institute, (Japan, 1979)

    Google Scholar 

  20. M. Kotaru, T. Ikeuchi, H. Yoshikawa, F. Ibuki, Investigations of antinutritional factors of the winged bean (< i> Psophocarpus tetragonolobus). Food chemistry 24(4), 279–286 (1987)

    Article  CAS  Google Scholar 

  21. Z-u Rehman, W. Shah, Thermal heat processing effects on antinutrients, protein and starch digestibility of food legumes. Food. Chem. 91(2), 327–331 (2005)

    Article  CAS  Google Scholar 

  22. Saami Sa, (2014) Thermal and hydrothermal treatments effects on antinutritional and functional properties of defatted winged bean seeds proteins. University Putra Malaysia, Serdang, Malaysia

  23. N.S. Hettiarachchy, U. Kalapathy, (1998) Functional Properties of Soy Proteins. In: Functional Properties of Proteins and Lipids, vol 708. ACS Symposium Series, vol 708. American Chemical Society, pp 80–95

  24. L.A. Johnson, P.J. White, R. Galloway, (2015) Soybeans: chemistry, production, processing, and utilization. Elsevier

  25. J.E. Kinsella, Functional properties of soy proteins. Journal of the American Oil Chemists’ Society 56(3), 242–258 (1979)

    Article  CAS  Google Scholar 

  26. M.B. Barac, M.B. Pesic, S.P. Stanojevic, A.Z. Kostic, V. Bivolarevic, Comparative study of the functional properties of three legume seed isolates: adzuki, pea and soy bean. Journal of food science and technology 52(5), 2779–2787 (2015)

    Article  CAS  Google Scholar 

  27. E.-S. Tan, N. Ying-Yuan, C.-Y. Gan, A comparative study of physicochemical characteristics and functionalities of pinto bean protein isolate (PBPI) against the soybean protein isolate (SPI) after the extraction optimisation. Food chemistry 152, 447–455 (2014)

    Article  CAS  Google Scholar 

  28. F. Xue, C. Li, X. Zhu, L. Wang, S. Pan, Comparative studies on the physicochemical properties of soy protein isolate-maltodextrin and soy protein isolate-gum acacia conjugate prepared through Maillard reaction. Food research international 51(2), 490–495 (2013)

    Article  CAS  Google Scholar 

  29. S.-W. Yin, C.-H. Tang, Q.-B. Wen, X.-Q. Yang, Properties of cast films from hemp (Cannabis sativa L.) and soy protein isolates. A comparative study. J Agric Food Chem 55(18), 7399–7404 (2007)

    Article  CAS  Google Scholar 

  30. A.B. Bello, B.O. Okezie, Effect of Extraction Conditions on the Extractability of Winged Bean (Psophocarpus tetragonolobus (L) DC). Proteins. Journal of Food Science 54(6), 1656–1657 (1989)

    Article  Google Scholar 

  31. B.O. Okezie, A.B. Bello, Physicochemical and Functional Properties of Winged Bean Flour and Isolate Compared with Soy Isolate. J. Food Sci. 53(2), 450–454 (1988)

    Article  CAS  Google Scholar 

  32. K. Narayana, M.S. Narasinga Rao, Functional Properties of Raw and Heat Processed Winged Bean (Psophocarpus tetragonolobus) Flour. J. Food Sci. 47(5), 1534–1538 (1982)

    Article  CAS  Google Scholar 

  33. Sathe SK, Deshpande SS, Salunkhe DK (1982) Functional Properties of Winged Bean [Psophocarpus tetragonolobus (L.) DC] Proteins. Journal of Food Science 47 (2):503–509.

    Article  CAS  Google Scholar 

  34. J. Chan, B.O. De Lumen, Properties of trypsin inhibitor from winged bean (Psophocarpus tetragonolobus) seed isolated by affinity chromatography. J. Agric. Food. Chem. 30(1), 42–46 (1982)

    Article  CAS  Google Scholar 

  35. B.O. De Lumen, L.A. Salamat, Trypsin inhibitor activity in winged bean (Psophocarpus tetragonolobus) and the possible role of tannin. Journal of Agricultural and Food chemistry 28(3), 533–536 (1980)

    Article  Google Scholar 

  36. A.A. Kortt, Isolation and characterization of the trypsin inhibitors from winged bean seed (Psophocarpus tetragonolobus (L) Dc.). Biochimica et Biophysica Acta (BBA)-Protein. Structure 577(2), 371–382 (1979)

    CAS  Google Scholar 

  37. Kortt AA (1980) Isolation and properties of a chymotrypsin inhibitor from winged bean seed (Psophocarpus tetragonolobus (L) Dc.). Biochimica et Biophysica acta (BBA)-Protein structure 624 (1):237–248

  38. P. Misra, G. Misra, D. Prakash, R. Tripathi, A. Chaudhary, P. Misra, Assay of some nutritional and antinutritional factors in different cultivars of winged bean (Psophocarpus tetragonolobus (L.) DC) seeds. Plant Foods Hum Nutr 36(4), 367–371 (1987)

    Article  Google Scholar 

  39. M. Yamamoto, H. Saburo, T. Ikenaka, Amino acid sequences of two trypsin inhibitors from winged bean seeds (Psophocarpus tetragonolobus (L) DC.). J Biochem (Tokyo) 94(3), 849–863 (1983)

    Article  CAS  Google Scholar 

  40. M. Carbonaro, G. Grant, M. Cappelloni, A. Pusztai, Perspectives into factors limiting in vivo digestion of legume proteins: Antinutritional compounds or storage proteins? Journal of Agricultural and Food chemistry 48(3), 742–749 (2000)

    Article  CAS  Google Scholar 

  41. M. Carbonaro, P. Maselli, A. Nucara, Relationship between digestibility and secondary structure of raw and thermally treated legume proteins: a Fourier transform infrared (FT-IR) spectroscopic study. Amino Acids 43(2), 911–921 (2012)

    Article  CAS  Google Scholar 

  42. J.E. Kinsella, Functional properties of proteins: possible relationships between structure and function in foams. Food. Chem. 7(4), 273–288 (1981)

    Article  CAS  Google Scholar 

  43. Wani IA, Sogi DS, Shivhare US, Gill BS (2015) Physico-chemical and functional properties of native and hydrolyzed kidney bean (Phaseolus vulgaris L.) protein isolates. Food Research International 76, Part 1:11–18.

    Article  Google Scholar 

  44. AOAC (2005) Official methods of analysis of AOAC International. Food composition; additives; natural contaminants, vol Volume II, 18th edn. Gaithersburg, MD : AOAC International, Califonia

  45. R. Horax, N. Hettiarachchy, K. Over, P. Chen, E. Gbur, Extraction, fractionation and characterization of bitter melon seed proteins. J Agric Food Chem 58(3), 1892–1897 (2010)

    Article  CAS  Google Scholar 

  46. L. Were, N. Hettiarachchy, U. Kalapathy, Modified soy proteins with improved foaming and water hydration properties. J. Food Sci. 62(4), 821–824 (1997)

    Article  CAS  Google Scholar 

  47. M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal. Biochem. 72(1–2), 248–254 (1976)

    Article  CAS  Google Scholar 

  48. C.W. Coffmann, V. Garcia, Functional properties and amino acid content of a protein isolate from mung bean flour*. International Journal of Food Science & Technology 12(5), 473–484 (1977)

    Article  CAS  Google Scholar 

  49. F.E. O’Kane, J.M. Vereijken, H. Gruppen, MAJS Van Boekel, Gelation Behavior of Protein Isolates Extracted from 5 Cultivars of Pisum sativum L. J. Food Sci. 70(2), C132–C137 (2005)

    Article  Google Scholar 

  50. L.R. Beuchat, Functional and electrophoretic characteristics of succinylated peanut flour protein. J. Agric. Food. Chem. 25(2), 258–261 (1977)

    Article  CAS  Google Scholar 

  51. Neto V, Narain N, Silva J, Bora P (2001) Functional properties of raw and heat processed cashew nut (Anacardium occidentale, L.) kernel protein isolates. Food/Nahrung 45 (4):258–262

  52. S. Hayakawa, S. Nakai, Relationships of Hydrophobicity and Net Charge to the Solubility of Milk and Soy Proteins. J. Food Sci. 50(2), 486–491 (1985). doi:10.1111/j.1365-2621.1985.tb13433.x

    Article  CAS  Google Scholar 

  53. R.E. Aluko, T. McIntosh, Polypeptide profile and functional properties of defatted meals and protein isolates of canola seeds. J. Sci. Food Agric. 81(4), 391–396 (2001)

    Article  CAS  Google Scholar 

  54. K. Shevkani, N. Singh, J.C. Rana, A. Kaur, Relationship between physicochemical and functional properties of amaranth (Amaranthus hypochondriacus) protein isolates. International Journal of Food Science & Technology 49(2), 541–550 (2014)

    Article  CAS  Google Scholar 

  55. C.-H. Tang, Thermal denaturation and gelation of vicilin-rich protein isolates from three Phaseolus legumes: A comparative study. LWT - Food Science and Technology 41(8), 1380–1388 (2008)

    Article  CAS  Google Scholar 

  56. T.G. Kudre, S. Benjakul, H. Kishimura, Comparative study on chemical compositions and properties of protein isolates from mung bean, black bean and bambara groundnut. J. Sci. Food Agric. 93(10), 2429–2436 (2013). doi:10.1002/jsfa.6052

    Article  CAS  Google Scholar 

  57. M. Kaur, N. Singh, Characterization of protein isolates from different Indian chickpea (Cicer arietinum L.) cultivars. Food. Chem. 102(1), 366–374 (2007)

    Article  CAS  Google Scholar 

  58. S. Mundi, R.E. Aluko, Effects of NaCl and pH on the structural conformations of kidney bean vicilin. Food. Chem. 139(1–4), 624–630 (2013)

    Article  CAS  Google Scholar 

  59. Damodaran S (2008) Amino acids, peptides and protein. In: Damodaran S, Parkin, K. L., & Fennema (ed) Fennema’s food chemistry, vol 4. CRC press, Taylor & Francis., Soundpark Way, Suite 300, Boca Raton, FL.

    Google Scholar 

  60. T.S. Withana-Gamage, J.P. Wanasundara, Z. Pietrasik, P.J. Shand, Physicochemical, thermal and functional characterisation of protein isolates from Kabuli and Desi chickpea (Cicer arietinum L.): a comparative study with soy (Glycine max) and pea (Pisum sativum L.). J. Sci. Food Agric. 91(6), 1022–1031 (2011)

    Article  CAS  Google Scholar 

  61. L. Rezig, F. Chibani, M. Chouaibi, M. Dalgalarrondo, K. Hessini, J. Guéguen, S. Hamdi, Pumpkin (Cucurbita maxima) Seed Proteins: Sequential Extraction Processing and Fraction Characterization. J. Agric. Food. Chem. 61(32), 7715–7721 (2013). doi:10.1021/jf402323u

    Article  CAS  Google Scholar 

  62. O. Lawal, K. Adebowale, B. Ogunsanwo, O. Sosanwo, S. Bankole, On the functional properties of globulin and albumin protein fractions and flours of African locust bean (< i> Parkia biglobossa). Food chemistry 92(4), 681–691 (2005)

    Article  CAS  Google Scholar 

  63. J. De Wit, Nutritional and functional characteristics of whey proteins in food products. J. Dairy Sci. 81(3), 597–608 (1998)

    Article  Google Scholar 

  64. Horax R, Hettiarachchy N, Chen P, Jalaluddin M (2004) Functional properties of protein isolate from cowpea (Vigna unguiculata L. Walp.). Journal of food science 69 (2):fct119-fct121

  65. W. Li, C. Shu, S. Yan, Q. Shen, Characteristics of sixteen mung bean cultivars and their protein isolates. International journal of food science & technology 45(6), 1205–1211 (2010)

    Article  CAS  Google Scholar 

  66. McClements DJ (2005) Food Emulsion: Principles, Practices and Techniques. Contemporary Food Science, 2nd edn. CRC Group, Boca Raton, FL. 33431

  67. Shao Y, Tang C-H (2014) Characteristics and oxidative stability of soy protein-stabilized oil-in-water emulsions: Influence of ionic strength and heat pretreatment. Food Hydrocolloids 37:149–158.

  68. McClements DJ (2004) Protein-stabilized emulsions. Current opinion in colloid & interface science 9 (5):305–313

  69. B.E. Chove, A.S. Grandison, M.J. Lewis, Emulsifying properties of soy protein isolate fractions obtained by isoelectric precipitation. J. Sci. Food Agric. 81(8), 759–763 (2001)

    Article  CAS  Google Scholar 

  70. H.-N. Liang, C.-H. Tang, Emulsifying and Interfacial Properties of Vicilins: Role of Conformational Flexibility at Quaternary and/or Tertiary Levels. J. Agric. Food. Chem. 61(46), 11140–11150 (2013). doi:10.1021/jf403847k

    Article  CAS  Google Scholar 

  71. Shevkani K, Singh N, Kaur A, Rana JC (2015) Structural and functional characterization of kidney bean and field pea protein isolates: A comparative study. Food Hydrocolloids 43:679–689

  72. K. Shevkani, N. Singh, A. Kaur, J.C. Rana, Physicochemical, Pasting, and Functional Properties of Amaranth Seed Flours: Effects of Lipids Removal. J. Food Sci. 79(7), C1271–C1277 (2014)

    Article  CAS  Google Scholar 

  73. A.C. Karaca, N. Low, M. Nickerson, Emulsifying properties of chickpea, faba bean, lentil and pea proteins produced by isoelectric precipitation and salt extraction. Food Res. Int. 44(9), 2742–2750 (2011)

    Article  CAS  Google Scholar 

  74. M. Joshi, B. Adhikari, P. Aldred, J.F. Panozzo, S. Kasapis, C.J. Barrow, Interfacial and emulsifying properties of lentil protein isolate. Food. Chem. 134(3), 1343–1353 (2012)

    Article  CAS  Google Scholar 

  75. C. Ran, C. Wang, L. Jiang, D. Wei, Y. Li, X. Sui, Z. Wang, D. Li, CEIS 2011Effect of Secondary Structure determined by FTIR Spectra on Surface Hydrophobicity of Soybean Protein Isolate. Procedia Eng. 15, 4819–4827 (2011)

    Article  Google Scholar 

  76. Barth A (2007) Infrared spectroscopy of proteins. Biochimica et Biophysica Acta (BBA)-Bioenergetics 1767 (9):1073–1101

  77. Heino Byler DMaS,, Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers 25(3), 469–487 (1986)

    Article  Google Scholar 

  78. X. Zhao, F. Chen, J. Chen, G. Gai, W. Xue, L. Li, Effects of AOT reverse micelle on properties of soy globulins. Food chemistry 111(3), 599–605 (2008)

    Article  CAS  Google Scholar 

  79. Chen X, Ru Y, Chen F, Wang X, Zhao X, Ao Q (2013) FTIR spectroscopic characterization of soy proteins obtained through AOT reverse micelles. Food Hydrocolloids 31 (2):435–437

  80. Carbonaro M, Maselli P, Nucara A (2015) Structural aspects of legume proteins and nutraceutical properties. Food Research International 76, Part 1:19–30.

    Article  Google Scholar 

Download references

Acknowledgements

The first author, Makeri, M. U. thanks the Malaysian Government for financial supports, the University Putra Malaysia for funding the research and the Ahmadu Bello University, Zaria, for the award of three years study fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kharidah Muhammad.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest in any form.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makeri, M.U., Abdulmannan, F., Ilowefah, M.A. et al. Comparative physico-chemical, functional and structural characteristics of winged bean [Psophocarpus tetragonolobus DC] and Soybean [Glycine max.] Protein isolates. Food Measure 11, 835–846 (2017). https://doi.org/10.1007/s11694-016-9455-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-016-9455-4

Keywords

Navigation