Skip to main content
Log in

Organic Superconductors as Stages for Exploration of Superconductivity in High Magnetic Fields

  • Published:
Journal of Superconductivity Aims and scope Submit manuscript

Abstract

The low dimensionality of organic superconductors leads to pronounced anisotropy in the upper critical field. In the vicinity of the field direction parallel to the superconducting plane, the critical field shoots out due to the suppression of the orbital pair-breaking effect. Organic superconductors are suitable for the study of the high-field state related to the spin effect under an aligned field, since they are of a high crystalline quality. The reported experimental results covering the behavior at low temperatures are reviewed first, and the breakthrough of the BCS Pauli paramagnetic limit is discussed. The potential of the low-dimensional organic superconductor for study of the effect of electronic spectrum quantization is argued.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Williams, J. R. Ferraro, R. J. Thorn, K. D. Carlson, U. Geiser, H. H. Wang, A. M. Kini, and M.-H. Whangbo, Organic Superconductors (Including Fullerenes) (Prentice Hall, Englewood Cliffs, NJ, 1992).

    Google Scholar 

  2. T. Ishiguro, K. Yamaji, and G. Saito, Organic Superconductors, 2nd ed. (Springer, Heidelberg, 1998).

    Google Scholar 

  3. S. Kagoshima, R. Kato, H. Fukuyama, H. Seo, and H. Kino, in Advances in Synthetic Metals: Twenty Years of Progress in Science and Technology, P. Bernier, S. Lefrand, and G. Bidan, eds. (Elsevier, Amsterdam, 1999), p. 262.

    Google Scholar 

  4. A. A. Abrikosov, Sov. Phys. JETP 5, 1174 (1957).

    Google Scholar 

  5. L. P. Gor'kov, Sov. Phys. JETP 10, 593 (1960).

    Google Scholar 

  6. N. R. Werthmer, E. Helfand, and P. C. Hohenberg, Phys. Rev. 147, 295 (1966).

    Google Scholar 

  7. K. Maki and T. Tsuneto, Prog. Theor. Phys. 31, 945 (1964).

    Google Scholar 

  8. A. M. Clogston, Phys. Rev. Lett. 9, 266 (1962).

    Google Scholar 

  9. B. S. Chandraskhar, Appl. Phys. Lett. 1, 7 (1962).

    Google Scholar 

  10. L. N. Bulaevskii, Sov. Phys. JETP 38, 634 (1974).

    Google Scholar 

  11. K. Aoi, W. Dieterich, and P. Fulde, Z. Phys. 267, 223 (1974).

    Google Scholar 

  12. A. I. Buzdin and J. P. Brison, Europhys. Lett. 35, 707 (1996).

    Google Scholar 

  13. A. G. Lebed, JETP Lett. 44, 144 (1986); J. Supercond. 12, 453 (1999).

    Google Scholar 

  14. N. Dupuis, J. Supercond. 12, 475 (1999); N. Dupuis and G. Montambaux, Phys. Rev. B 49, 8993 (1994).

    Google Scholar 

  15. H. Shimahara, J. Supercond. 12, 469 (1999); Phys. Rev. B 50, 12760 (1994).

    Google Scholar 

  16. M. Tinkham, Introduction to Superconductivity, 2nd ed. (McGraw–Hill, New York, 1996), p. 139.

    Google Scholar 

  17. I. J. Lee, M. J. Naughton, G. M. Danner, and P. M. Chaikin, Phys. Rev. Lett. 78, 3555 (1997).

    Google Scholar 

  18. I. J. Lee, S. E. Brown, D. S. Chow, W. G. Clark, J. Strouse, M. J. Naughton, and P. M. Chaikin, Cond. Mats. 0001332.

  19. A. Lebed, unpublished.

  20. V. N. Laukhin, S. I. Pesozkii, and E. B. Yagbuskii, JETP Lett. 45, 392 (1987).

    Google Scholar 

  21. R. B. Lyubovskii, R. N. Lyubovskaya, and O. A. D'yachenko, J. Phys. I France 6, 1609 (1996).

    Google Scholar 

  22. T. Ishiguro, J. Phys. IV France 10, Pr3-139 (2000).

    Google Scholar 

  23. E. Ohmichi, T. Ishiguro, T. Sakon, T. Sasaki, M. Motokawa, R. B. Lyubovskii, and R. N. Lyubovskaya, J. Supercond. 12, 505 (1999).

    Google Scholar 

  24. M.-S. Nam, J. A. Simmington, J. Singleton, S. J. Blundel, A. Ardavan, M. Kurmoo, and P. Day, J. Phys. Cond. Matter 11, L477 (1999).

    Google Scholar 

  25. F. Zou, J. S. Brooks, R. H. MaKenzie, J. A. Schlueter, and J. M. Williams, Phys. Rev. B 61, 750 (2000).

    Google Scholar 

  26. See, e.g., M. A. Tanatar, T. Ishiguro, T. Kondo, and G. Saito, Phys. Rev. B 59, 3841 (1999), and references therein.

    Google Scholar 

  27. A. E. Kovalev, T. Ishiguro, T. Kondo, and G. Saito, Phys. Rev. B 62, 103 (2000).

    Google Scholar 

  28. Y. Kamiya, Y. Shimojo, E. Ohmichi, T. Ishiguro, G. Saito, and H. Yamochi, unpublished.

  29. M. A. Tanatar, T. Ishiguro, H. Tanaka, A. Kobayashi, and H. Kobayashi, J. Supercond. 12, 511 (1999).

    Google Scholar 

  30. D. Jérome and H. J. Schultz, Adv. Phys. 31, 299 (1982).

    Google Scholar 

  31. H. Mayaffre, P. Wzeitek, D. Jérome, C. Lenoir, and P. Batail, Phys. Rev. Lett 76, 4951 (1996).

    Google Scholar 

  32. R. A. Klemm, A. Luther, and M. R. Beasley, Phys. Rev. B 12, 877 (1975).

    Google Scholar 

  33. M. Schossmann and J. P. Garbotte, Phys. Rev. B 39, 4210 (1989).

    Google Scholar 

  34. T. P. Orlando and M. R. Beaseley, Phys. Rev. Lett. 46, 1589 (1981).

    Google Scholar 

  35. P. Fulde and R. A. Ferrell, Phys. Rev. 135, A550 (1964).

    Google Scholar 

  36. A. I. Larkin and Yu. N. Ovchinikov, Sov. Phys. JETP 20, 762 (1965).

    Google Scholar 

  37. H. Burkhardt and D. Rainer, Ann. Phys. 3, 181 (1994).

    Google Scholar 

  38. C. A. P. Sa de Melo, J. Supercond. 12, 459 (1999).

    Google Scholar 

  39. H. Shimahara, J. Phys. Soc. Jpn. 68, 3069 (1999).

    Google Scholar 

  40. J. A. Symington, J. Singleton, M.-S. Nam, A. Ardavan, W. Hayes, M. Karmoo, and P. Day, Cond. Mats. 1999 aug. 23-001.

  41. A. Kovalev, T. Ishiguro, J. Yamada, and H. Anzai, unpublished.

  42. A. G. Lebed and K. Yamaji, Phys. Rev. Lett. 80, 2697 (1998).

    Google Scholar 

  43. M. Miyazaki, K. Kishigi, and Y. Hasegawa, J. Phys. Soc. Jpn. 67, L2618 (1998).

    Google Scholar 

  44. V. P. Mineev, J. Phys. Soc. Jpn. 69 (2000).

  45. M. R. Razolt and Z. Tes¡anovic´, Rev.Mod. Phys. 64, 709 (1992).

    Google Scholar 

  46. M. A. Baranov, D. V. Efremov, and M. Yu. Kagan, Physica C 218, 75 (1993).

    Google Scholar 

  47. M. Yu. Kagan and A. C. Chubukov, JETP Lett. 50, 517 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishiguro, T. Organic Superconductors as Stages for Exploration of Superconductivity in High Magnetic Fields. Journal of Superconductivity 13, 817–822 (2000). https://doi.org/10.1023/A:1007855307786

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007855307786

Navigation