Skip to main content
Log in

Macroscopic Electroosmotic Coupling Coefficient in Random Porous Media

  • Published:
Mathematical Geology Aims and scope Submit manuscript

Abstract

A general analysis of electroosmotic phenomena is given for random porous media through which an electrolyte flows. A dimensional analysis demonstrates the crucial importance of the dimensionless coupling parameter a, which is usually very small when compared to 1; this suggests an expansion in terms of a and a numerical scheme that avoids the instabilities occurring in the direct solution. For media whose properties such as permeability are lognormally distributed, an analytical expression of the macroscopic coupling coefficients can be obtained when the fluctuations are small. Various results are provided for laminated media, correlated media, and stratified or fractured media. The influence of some macroscopic geometrical parameters is illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Adler, P. M., 1992, Porous media: Geometry and transports: Butterworth/Heinemann, Stoneham, MA, 544 p.

    Google Scholar 

  • Adler, P. M., and Thovert, J.-F., 1999, Fractures and fracture networks: Kluwer, Dordrecht, 429 p.

    Google Scholar 

  • Adler, P. M., Le Mouel, J.-L., and Zlotnicki, J., 1999, Electrokinetic measurements and magnetic fields generated by flow through a fractured zone: A sensitivity study for La Fournaise volcano: Geophys. Res. Lett., v. 26, 795–798.

    Google Scholar 

  • Békri, S., Xu, K., Yousefian, F., Adler, P. M., Thovert, J.-F., Muller, J., Iden, K., Psyllos, A., Stubos, A. K., and Ioannidis, M. A., 2000, Pore geometry and transport properties in North Sea chalk, v. 25, 107–134.

    Google Scholar 

  • Beran, M. J., 1968, Statistical continuum theories: Interscience, New York.

    Google Scholar 

  • Brace, W. F., Orange, A. S., and Madden, T. R., 1965, The effect of pressure on the electrical resistivity of water-saturated crystalline rocks: J. Geophys. Res., v. 70, 5669–5678.

    Google Scholar 

  • Coelho, D., Shapiro, M., Thovert, J.-F., and Adler, P. M., 1996, Electro-osmotic phenomena in porous media: J. Colloid Interf. Sci., v. 181, 169–190.

    Google Scholar 

  • Dagan, G., 1989, Flow and transport in porous formations: Springer-Verlag, Berlin, 465 p.

    Google Scholar 

  • Dagan, G., 1993, Higher-order correction of effective permeability of heterogeneous isotropic formations of lognormal conductivity distribution: Transp. Porous Media, v. 12, 279–290.

    Google Scholar 

  • Dey, A., and Morrison, H. F., 1979, Resistivity modeling for arbitrarily shaped three-dimensional structures: Geophysics, v. 44, 753–780.

    Google Scholar 

  • de Groot, S. R., and Mazur, P., 1969, Non-equilibrium thermodynamics: North-Holland, Amsterdam, 510 p.

    Google Scholar 

  • de Wit, A., 1995, Correlation structure dependence of the effective permeability of heterogeneous porous media: Phys. Fluids, v. 7, 2553–2562.

    Google Scholar 

  • Fitterman, D. V., 1978, Electrokinetic and magnetic anomalies associated with dilatant regions in a layered earth: J. Geophys. Res., v. 83, 5923–5928.

    Google Scholar 

  • Fitterman, D. V., 1979, Calculations of self-potential anomalies near vertical contacts: Geophysics, v. 44, 195–205.

    Google Scholar 

  • Gutjahr, A. L., Gelhar, L. W., Bakr, A. A., and McMillan, J. R., 1978, Stochastic analysis of spatial variability in subsurface flow 2: Evaluation and application: Water Resour. Res., v. 14, 953–959.

    Google Scholar 

  • Indelman, P., and Abramovich, B., 1994, A higher-order approximation to effective conductivity in media of anisotropic random structure: Water Resour. Res., v. 30, 1857–1864.

    Google Scholar 

  • Ishido, T., and Mizutani, H., 1981, Experimental and theoretical basis of electrokinetic phenomena in rock-water systems and its applications to geophysics: J. Geophys. Res., v. 86, 1763–1775.

    Google Scholar 

  • Jacquin, C. G., 1964, Corrélation entre la perméabilité et les caractéristiques du grès de Fontainebleau: Revue Inst. Français du Pétrole, v. 19, 921–937.

    Google Scholar 

  • Johnson, D. L., Koplik, J., and Schwartz, L., 1986, New pore-size parameter characterizing transport in porous media: Phys. Rev. Lett., v. 57, 2564–2567.

    Google Scholar 

  • Johnston, M. J. S., 1997, Review of electric and magnetic fields accompanying seismic and volcanic activity: Surveys in Geophys., v. 18, 441–475.

    Google Scholar 

  • Landauer, R., 1978, Electrical conductivity in inhomogeneous media, in Electrical transport and optical properties of inhomogeneous media: in Garland, J. C., and Tanner, D. B., eds. AIP Conference Proceedings No. 40, American Institute of Physics.

  • Mackie, R. L., and Madden, T. R., 1993, Three-dimensional magnetotelluric inversion using conjugate gradients: Geophys. J. Int., v. 115, 215–229

    Google Scholar 

  • Marino, S., Békri, S., Coelho, D., and Adler, P. M., 2000, Electroosmotic phenomena in fractures: J. Colloid Interf. Sci., v. 223, 292–304.

    Google Scholar 

  • Mizutani, H., and Ishido, T., 1976, A new interpretation of magnetic field variation associated with the Matsushiro earthquakes: J. Geomag. Geoelectr., v. 28, 179–188.

    Google Scholar 

  • Morgan, F. D., Williams, E. R., and Madden, T. R., 1989, Streaming potential properties of Westerly granite with applications: J. Geophys. Res., v. B94, 12,449–12,461.

    Google Scholar 

  • Nourbehecht, B., 1963, Irreversible thermodynamic effects in inhomogeneous media and their applications in certain geological problems: unpublished Ph.D. dissertation, Mass. Inst. Technol., Cambridge, MA.

    Google Scholar 

  • Park, S. K., 1985, Distortion of magnetotelluric sounding curves by three-dimensional structures: Geophysics, v. 50, 785–797.

    Google Scholar 

  • Sill, W. R., 1983, Self-potential modeling from primary flows: Geophysics, v. 48, 76–86.

    Google Scholar 

  • Wiener, O., 1912, Die Theorie des Mischk¨örpers für das Feld der stationären Strömung. Erste Abhandlung: Die Mittelwertsätze für Kraft, Polarisation und Energie, Abhandl. d.K.S. Gesselsch. d. Wissensch. Math.-Phys., v. 32, 509–564.

    Google Scholar 

  • Yao, J., Thovert, J.-F., Adler, P. M., Tsariroglou, C. D., Burganos, V. N., Payatakes, A. C., Moulu, J.-C., and Kalaydjian, F., 1997, Characterization, reconstruction and transport properties of Vosges sandstones: Revue Inst. Français Pétrole, v. 52, 3–21.

    Google Scholar 

  • Zlotnicki, J., and Le Mouel, J.-L., 1990, Possible electrokinetic origin of large magnetic variations at La Fournaise volcano: Nature, v. 343, 633–635.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adler, P.M. Macroscopic Electroosmotic Coupling Coefficient in Random Porous Media. Mathematical Geology 33, 63–93 (2001). https://doi.org/10.1023/A:1007562326674

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007562326674

Navigation