Skip to main content
Log in

Separation of Different Conformations of Plant Mitochondrial DNA Molecules by Field Inversion Gel Electrophoresis

  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Mitochondrial (mt) DNA structure in higher plants is still unclear as to the circularity or linearity of the genome. We have developed a system to electrophoretically separate distinct populations of mtDNA, with some populations enriched for networked linear and circular DNA molecules. Using field inversion gel electrophoresis (FIGE) and electron microscopy (EM), we have identified four distinct populations of mtDNA from two Brassica species. Using FIGE, two slow migrating mtDNA populations ran faster than a 66 kbp Escherichia coli circular plasmid marker, while these same populations comigrated in the compression zone in contour-clamped homogeneous electrophoretic field (CHEF) gels. A fast-migrating mtDNA population was also resolved by FIGE as a diffuse band between 20 to 70 kbp when compared with linear lambda (λ) markers. FIGE resolved the 66 kbp circular marker into several multimers, while CHEF resolved only open-circular monomers and linears. In agreement with FIGE results, EM analysis indicated the two slow migrating mtDNA populations contained circular (both supercoiled and relaxed circles) and free linear molecules of 10-60 kbp, and networked linear molecules of 45–140 kbp total size that may represent recombination intermediates. The fast migrating population consisted of 10–50 kbp linear molecules. Well-bound mtDNA showed only long linear molecules of 40–150 kbp with no detection of circles or complex/rosette molecules. This report shows that FIGE has clear advantages over CHEF for separating large DNA molecules with different conformations, and may be very useful for studies to characterize genome structure in complex systems such as plant mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • André C and Walbot V (1995) Pulsed-field gel mapping of maize mitochondrial chromosomes. Mol Gen Genet 247: 255–263.

    Article  PubMed  Google Scholar 

  • Backert S, Dörfel P and Börner T (1995) Investigation of plant organellar DNAs by pulsed-field gel electrophoresis. Curr Genet 2: 390–399.

    Article  Google Scholar 

  • Backert S, Lurz R and Börner T (1996a) Electron microscopic investigation of mitochondrial DNA from Chenopodium album(L.). Curr Genet 29: 427–436.

    Article  CAS  PubMed  Google Scholar 

  • Backert S, Dörfel P, Lurz R and Börner T (1996b) Rolling circle replication in mitochondria of the higher plant Chenopodium album(L.). Mol Cell Biol 16: 6285–6294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Backert S, Nielsen BL and Börner T (1997a) The mystery of the rings: structure and replication of mitochondrial genomes from higher plants. Trends Plant Sci. 2: 477–483.

    Article  Google Scholar 

  • Backert S, Lurz R, Oyarzabal OA and Börner T (1997b) High content, size and distribution of single-stranded DNA in the mitochondria of Chenopodium album(L.). Plant Mol Biol 33: 1037–1050.

    Article  CAS  PubMed  Google Scholar 

  • Bendich AJ (1993) Reaching for the ring: the study of mitochondrial genome structure. Curr Genet 24: 279–290.

    Article  CAS  PubMed  Google Scholar 

  • Bendich A and Smith S (1990) Moving pictures and pulsed-field gel electrophoresis show linear DNA molecules from chloroplasts and mitochondria. Curr Genet 17: 421–425.

    Article  CAS  Google Scholar 

  • Bendich A, Loretz C and Monnat R Jr (1993) The structure of the plant mitochondrial genome. In: Brennicke A and Kück K (eds), Plant Mitochondria, pp. 171–180. Verlag Chemie, Weinheim.

    Google Scholar 

  • Beverley S (1988) Characterization of the ‘unusual’ mobility of large circular DNAs in pulsed field-gradient electrophoresis. Nucl Acids Res 16: 925–939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carle G, Frank M and Olson M (1986) Electrophoretic separation of large DNA molecules by periodic inversion of the electric field. Science 232: 65–68.

    Article  CAS  PubMed  Google Scholar 

  • Han Z and Stachow C (1994) Analysis of Schozosaccharomyces pombe mitochondrial DNA replication by two dimensional gel electrophoresis. Chromosoma 103: 162–170.

    CAS  PubMed  Google Scholar 

  • Heller C and Pohl F (1990) Field inversion gel electrophoresis with different pulsed time ramps. Nucl Acids Res 18: 6299–6304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levene S and Zimm B (1987) Separation of open-circular DNA using pulsed-field electrophoresis. Proc Natl Acad Sci USA 84: 4054–4057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levings CS III, Shah DM, Wu WWL, Pring DR and Timothy DH (1979) Molecular heterogeneity among mitochondrial DNAs from different maize cytoplasms. In: Cummings DJ, Borst P, David IB, Weissman SM, Fox C (eds), Extrachromosomal DNA, pp. 63–73. ICN-UCLA Symp Mol Cell Biol, vol. 15, Academic Press, New York.

    Chapter  Google Scholar 

  • Levy AA, André CP and Walbot V (1991) Analysis of a 120-kilobase mitochondrial chromosome in maize. Genetics 128: 417–424.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lonsdale DM, Hodge TP and Fauron CM-R (1984) The physical map and organization of the mitochondrial genome from the fertile cytoplasm of maize. Nucl Acids Res 12: 9249–9261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maleszka R and Clark-Walker G (1992) In vivo conformation of mitochondrial DNA in fungi and zoosporic moulds. Curr Genet 22: 341–344.

    Article  CAS  PubMed  Google Scholar 

  • Maleszka R (1993) Single-stranded regions in yeast mitochondrial DNA revealed by pulsed-field gel electrophoresis. Appl Theor Electrophor 3: 259–263.

    CAS  PubMed  Google Scholar 

  • Narayanan K, André C, Yang J and Walbot V (1993) Organization of a 117-kb circular mitochondrial chromosome in IR36 rice. Curr Genet 23: 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Negruk V, Eisner G, Redichkina T, Dumanskaya N, Cherny D, Alexandrov A, Shemyakin M and Butenko R (1986) Diversity of Vicia faba circular mtDNA in whole plants and suspension cultures. Theor Appl Genet 72: 541–547.

    Article  CAS  PubMed  Google Scholar 

  • Oda K, Kochchi T and Ohyama K (1992) Mitochondrial DNA of Marchantia polymorpha as a single circular form with no incorporation of foreign DNA. Biosci Biotech Biochem 56: 132–135.

    Article  CAS  Google Scholar 

  • Oldenburg D and Bendich A (1996) Size and structure of replicating mitochondrial DNA in cultured tobacco cells. Plant Cell 8: 447–461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oldenburg DJ and Bendich AJ (1998) The structure of mitochondrial DNA from the liverwort, Marchantia polymorpha. J Mol Biol 276: 745–758.

    Article  CAS  PubMed  Google Scholar 

  • Palmer J and Herbon L (1987) Unicircular structure of the Brassica hirta mitochondrial genome. Curr Genet 11: 565–570.

    Article  CAS  PubMed  Google Scholar 

  • Palmer JD and Shields CR (1984) Tripartite structure of the Brassica campestris mitochondrial genome. Nature 307: 437–440.

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch E and Maniatis T (1989) Molecular Cloning: A Laboratory Manual, pp. 1.25–1.28, 6.7–6.13. Cold Spring Harbor Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Schuster W and Brennicke A (1994) The plant mitochondrial genome: physical structure, information content, RNA editing, and gene migration to the nucleus. Ann Rev Plant Physiol Plant Mol Biol 45: 61–78.

    Article  CAS  Google Scholar 

  • Schwartz D and Cantor C (1984) Separation of yeast chromosome-sized DNAs by pulsed-field gradient gel electrophoresis. Cell 37: 67–75.

    Article  CAS  PubMed  Google Scholar 

  • Synenki RM, Levings CS III and Shah DM (1978) Physicochemical characterization of mitochondrial DNA from soybean. Plant Physiol 61: 460–464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward BL, Anderson KS and Bendich AJ (1981) The mitochondrial genome is large and variable in a family of plants (Curcubitaceae). Curr Genet 12: 55–67.

    Google Scholar 

  • Weiden M, Osheim Y, Beyer A and van der Ploeg L (1990) Chromosome structure: DNA nucleotide sequence elements of a subset of the minichromosomes of the protozoan Trypanosoma brucei. Mol Cell Biol 11: 3823–3834.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scissum-Gunn, K.D., Gandhi, M., Backert, S. et al. Separation of Different Conformations of Plant Mitochondrial DNA Molecules by Field Inversion Gel Electrophoresis. Plant Molecular Biology Reporter 16, 219–229 (1998). https://doi.org/10.1023/A:1007512108373

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007512108373

Navigation