Skip to main content

Using Two-Dimensional Intact Mitochondrial DNA (mtDNA) Agarose Gel Electrophoresis (2D-IMAGE) to Detect Changes in Topology Associated with Mitochondrial Replication, Transcription, and Damage

  • Protocol
  • First Online:
DNA Electrophoresis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2119))

Abstract

The study of mitochondrial DNA (mtDNA) integrity and how replication, transcription, repair, and degradation maintain mitochondrial function has been hampered due to the inability to identify mtDNA structural forms. Here we describe the use of 2D intact mtDNA agarose gel electrophoresis, or 2D-IMAGE, to identify up to 25 major mtDNA topoisomers such as double-stranded circular mtDNA (including supercoiled molecules, nicked circles, and multiple catenated species) and various forms containing single-stranded DNA (ssDNA) structures. Using this modification of a classical 1D gel electrophoresis procedure, many of the identified mtDNA species have been associated with mitochondrial replication, damage, deletions, and possibly transcription. The increased resolution of 2D-IMAGE allows for the identification and monitoring of novel mtDNA intermediates to reveal alterations in genome replication, transcription, repair, or degradation associated with perturbations during mitochondrial stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Whittaker RG, Schaefer AM, McFarland R et al (2007) Prevalence and progression of diabetes in mitochondrial disease. Diabetologia 50:2085–2089. https://doi.org/10.1007/s00125-007-0779-9

    Article  CAS  Google Scholar 

  2. Gibellini L, Pinti M, Bartolomeo R et al (2015) Inhibition of Lon protease by triterpenoids alters mitochondria and is associated to cell death in human cancer cells. Oncotarget 6:25466–25483. https://doi.org/10.18632/oncotarget.4510

    Article  Google Scholar 

  3. Ye C, Shu X-O, Wen W et al (2008) Quantitative analysis of mitochondrial DNA 4977-bp deletion in sporadic breast cancer and benign breast diseases. Breast Cancer Res Treat 108:427–434. https://doi.org/10.1007/s10549-007-9613-9

    Article  CAS  Google Scholar 

  4. Meierhofer D, Mayr JA, Foetschl U et al (2004) Decrease of mitochondrial DNA content and energy metabolism in renal cell carcinoma. Carcinogenesis 25:1005–1010. https://doi.org/10.1093/carcin/bgh104

    Article  CAS  Google Scholar 

  5. Lezi E, Swerdlow RH (2012) Mitochondria in neurodegeneration. Adv Exp Med Biol 942:269–286. https://doi.org/10.1007/978-94-007-2869-1_12

    Article  CAS  Google Scholar 

  6. Pinto M, Moraes CT (2014) Mitochondrial genome changes and neurodegenerative diseases. Biochim Biophys Acta Mol basis Dis 1842:1198–1207

    Article  CAS  Google Scholar 

  7. Boyapati RK, Tamborska A, Dorward DA, Ho G-T (2017) Advances in the understanding of mitochondrial DNA as a pathogenic factor in inflammatory diseases. F1000Res 6:169. https://doi.org/10.12688/f1000research.10397.1

    Article  Google Scholar 

  8. Nakayama H, Otsu K (2018) Mitochondrial DNA as an inflammatory mediator in cardiovascular diseases. Biochem J 475:839–852. https://doi.org/10.1042/bcj20170714

    Article  CAS  Google Scholar 

  9. Ahmed N, Ronchi D, Pietro CG (2015) Genes and pathways involved in adult onset disorders featuring muscle mitochondrial DNA instability. Int J Mol Sci 16:18054–18076

    Article  CAS  Google Scholar 

  10. Pinto M, Moraes CT (2015) Mechanisms linking mtDNA damage and aging. Free Radic Biol Med 85:250–258

    Article  CAS  Google Scholar 

  11. Sun N, Youle RJ, Finkel T (2016) The mitochondrial basis of aging. Mol Cell 61:654–666

    Article  CAS  Google Scholar 

  12. Kukat C, Wurm CA, Spåhr H et al (2011) Super-resolution microscopy reveals that mammalian mitochondrial nucleoids have a uniform size and frequently contain a single copy of mtDNA. Proc Natl Acad Sci U S A 108:13534–13539. https://doi.org/10.1073/pnas.1109263108

    Article  CAS  Google Scholar 

  13. Van Laar VS, Arnold B, Howlett EH et al (2018) Evidence for compartmentalized axonal mitochondrial biogenesis: mitochondrial DNA replication increases in distal axons as an early response to Parkinson’s disease-relevant stress. J Neurosci 38:7505–7515. https://doi.org/10.1523/JNEUROSCI.0541-18.2018

    Article  Google Scholar 

  14. Lewis SC, Uchiyama LF, Nunnari J (2016) ER-mitochondria contacts couple mtDNA synthesis with mitochondrial division in human cells. Science 353:aaf5549. (80- ). https://doi.org/10.1126/science.aaf5549

    Article  Google Scholar 

  15. Kolesar JE, Wang CY, Taguchi YV et al (2013) Two-dimensional intact mitochondrial DNA agarose electrophoresis reveals the structural complexity of the mammalian mitochondrial genome. Nucleic Acids Res 41:e58–e58. https://doi.org/10.1093/nar/gks1324

    Article  CAS  Google Scholar 

  16. Singh G, Hauswirth WW, Ross WE, Neims AH (1985) A method for assessing damage to mitochondrial DNA caused by radiation and epichlorohydrin. Mol Pharmacol 27:167–170

    CAS  PubMed  Google Scholar 

  17. Higuchi Y, Linn S (1995) Purification of all forms of HeLa cell mitochondrial DNA and assessment of damage to it caused by hydrogen peroxide treatment of mitochondria or cells. J Biol Chem 270:7950

    Article  CAS  Google Scholar 

  18. Hangas A, Aasumets K, Kekäläinen NJ et al (2018) Ciprofloxacin impairs mitochondrial DNA replication initiation through inhibition of topoisomerase 2. Nucleic Acids Res 46:9625–9636. https://doi.org/10.1093/nar/gky793

    Article  CAS  Google Scholar 

  19. Pohjoismäki JLO, Wanrooij S, Hyvärinen AK et al (2006) Alterations to the expression level of mitochondrial transcription factor a, TFAM, modify the mode of mitochondrial DNA replication in cultured human cells. Nucleic Acids Res 34:5815–5828. https://doi.org/10.1093/nar/gkl703

    Article  Google Scholar 

Download references

Acknowledgments

This work was support by NIH grants GM110424, MH119335 and HD099666 to B.A.K. The authors wish to recognize the efforts of Petra Langer-Cravens, Ph.D. who provided writing assistance for the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brett A. Kaufman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kolesar, J.E., Kaufman, B.A. (2020). Using Two-Dimensional Intact Mitochondrial DNA (mtDNA) Agarose Gel Electrophoresis (2D-IMAGE) to Detect Changes in Topology Associated with Mitochondrial Replication, Transcription, and Damage. In: Hanada, K. (eds) DNA Electrophoresis. Methods in Molecular Biology, vol 2119. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0323-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0323-9_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0322-2

  • Online ISBN: 978-1-0716-0323-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics