Skip to main content
Log in

Use of Liquid Precursors for Diamond Chemical Vapor Deposition--The Effects of Mass Transport and Oxygen

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Thermal plasma chemical vapor deposition of diamond-utilizing liquidfeedstock injection has been shown to yield higher mass deposition rates,larger crystal size, and thicker films when compared to the use of gaseousfeedstock for equivalent operating conditions. Increased mass transport ofthe activated precursor species across the substrate diffusion boundarylayer and the presence of oxygen in liquid precursors are investigated aspotential reasons for the observed results. Comparisons of the variousprecursor systems investigated in this study are based on crystal size andfilm thickness as a function of radial postion, area of deposit, totalmass deposition rate, and the observed liquid precursor droplet trajectorieswithin the deposition chamber using a laser strobe video system. The resultsindicate that the mass transport in both the liquid and gaseous precursorsystems is greatly improved by the use of an inert carrier gas. Further, theuse of a liquid versus a gaseous precursor does not seem toresult in higher total deposition rates when the operating conditions forboth have been optimized. Finally, the presence of oxygen in the liquidfeedstock system is found to be at least partly responsible for theincreased growth rate, which is observed when comparing the plainhydrocarbon precursor cases with the oxygenated liquid precursorcase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Q. Zhuang, P. Schwendinger, C. Hammerstrand, J. Heberlein, E. Pfender, and R. Young, Proc. Intern. Symp. Plasma Chem. 12, 2303–2308 (1995).

    Google Scholar 

  2. M. Asmann, C. F. M. Borges, J. Heberlein, and E. Pfender, Proc. Intern. Symp. Plasma Chem. 13, 1206–1211 (1997).

    Google Scholar 

  3. C. George, C. Hammerstrand, D. Kolman, P. Schwendinger, D. Zhuang, J. Heberlein, and E. Pfender, Plasma Technology for Low-Cost Diamond Deposition, final report submitted to Westinghouse Science and Tecnology Center, University of Minnesota--High Temperature Laboratory (1994).

  4. Q. Y. Han, T. Or, Z. Lu, J. Heberlein, and E. Pfender, Proc. 2nd Intern. Symp. Diamond Materials 91-8, 115–122 (1991).

    Google Scholar 

  5. T. Or, Q. Y. Han, Z. Lu, J. Heberlein, and E. Pfender, Proc. Intern. Symp. Plasma Chem. 10, 3.1–15 (1–6) (1991).

  6. E. Pfender, Q. Y. Han, T. Or, Z. Lu, and J. Heberlein, Diamond Related Mater. 1, 127–133 (1992).

    Google Scholar 

  7. J. Heberlein and E. Pfender, Mater. Sci. Forum 140–142, 477–496 (1993).

    Google Scholar 

  8. S. Paik, X. Chen, P. Kong, and E. Pfender, Plasma Chem. Plasma Process. 11, 229–249 (1991).

    Google Scholar 

  9. Y. Liou, A. Inspektor, R. Weimer, D. Knight, and R. Messier, J. Mater. Res. 5, 2305–2312 (1990).

    Google Scholar 

  10. S. Kapoor, M. Kelly, and S. Hagstroem, J. Appl. Phys. 77, 6267–6272 (1995).

    Google Scholar 

  11. T.-H. Kim and T. Kobayashi, Jpn. J. Appl. Phys. 33, L459–L462 (1994).

    Google Scholar 

  12. L. Schaefer and C. Klages, Surface Coat. Technol. 47, 13–21 (1991).

    Google Scholar 

  13. J. Mucha, D. Flamm, and D. Ibbotson, J. Appl. Phys. 65, 3448–3452 (1989).

    Google Scholar 

  14. Y. Muranaka, H. Yamashita, and H. Miyadera. Surf. Coat. Technol. 47 (1991).

  15. S. Jin, R. Molnar, D. Jong, and T. Moustakas, Diamond Optics V, 1759, 41–49 (1992).

    Google Scholar 

  16. S. Jin and T. Moustakas, Diamond Related Mater. 2, 1355–1359 (1993).

    Google Scholar 

  17. U. Meier and L. Hunziker, Proc. Intern. Symp. Diamond Mater. 10, 203–208 (1991).

    Google Scholar 

  18. D. Kolman, J. Heberlein and E. Pfender, Proc. Intern. Symp. Plasma Chem. 13, 320–325 (1997).

    Google Scholar 

  19. D. Kolman, J. Heberlein and E. Pfender, Plasma Chem. Plasma Process. 18, 73–89 (1998).

    Google Scholar 

  20. D. Kolman, J. Heberlein and E. Pfender, Diamond Related Mater. 7, 794–801 (1998).

    Google Scholar 

  21. J. Rankin, R. E. Boekenhauer, R. Csencsits, Y. Shigesato, M. W. Jacobson, and B. W. Sheldon, J. Mater. Res. 9, 2164–2173 (1994).

    Google Scholar 

  22. J. Rankin, Y. Shigesato, R. E. Boekenhauer, R. Csencsits, D. C. Paine, and B. W. Sheldon, Mater. Res. Soc. Symp. Proc. 270, 317–322 (1992).

    Google Scholar 

  23. W. Hsu, D. M. Tung, E. A. Fuchs, and K. F. McCarty, Appl. Phys. Lett. 55, 2739–2741 (1989).

    Google Scholar 

  24. M. Asmann, K. Nelson, J. Heberlein, and E. Pfender, Proc. Intern. Symp. Plasma Chem. 14, August, 1999, to be published.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asmann, M., Heberlein, J. & Pfender, E. Use of Liquid Precursors for Diamond Chemical Vapor Deposition--The Effects of Mass Transport and Oxygen. Plasma Chemistry and Plasma Processing 20, 209–224 (2000). https://doi.org/10.1023/A:1007017106796

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007017106796

Navigation